
2
SEVersion 1.02

3

E D I T I N G G U I D E
by Mr-Murray

© 2008 Sascha ”Mr-Murray” Hoffmann

The contents of this Editing Guide will help you to make the work with the Armed Assault
Editor much more easier. You do not need any knowledge in programming to create
interesting and fun full Missions for Armed Assault.

That’s true, without any knowledge in programming! But it wouldn’t be bad if you have
some experience out of the work with the Operation Flashpoint Editor of course, it would
be an advantage but it is not quite needed. This Guide will explain you the parts of the
Editor individually and many examples will help you to understand the single operations.
Additional to this, the Armed Assault Editing Guide will show you the nearly unlimited
possibilities which were offered you by the Editor.

After you worked with this Guide for some time, so you’ll be able to create your own
exciting Missions. The only thing you really need is creativity and lots of ideas which wants
all to be come true. The possibility to create your own movies, which one can compare
with Hollywood movies, and further the possibility to add your favorite Sound files into
the Missions will pull the player in the ban.

Create dynamic Missions with different weather, time of day and furthermore different
mission targets. Units, Objects or the Player himself are located at any other positions
every time when the mission begins again. All these possibilities shouldn’t actually
anymore be a problem for you.

Now it is up to you and your ideas and your creativity to create new good Missions. This
Guide doesn’t contain an directing Book, no Scenarios or any other Stories for your
Missions. That’s all up to you. But with this Guide, you have all you need to make your
ideas come true. And if anything doesn’t work as you want to, so just relax, exit the editor
and play some missions, go on with your campaign or enter the Multiplayer lobby to get
new ideas for your mission.

Armed Assault is setting up as Operation Flashpoint successor with an own created script
language from his ancestor. There was many new changes made here and there and lots
of new stuff used in ArmA but the basic concept is still the same. The Editor still enables
the user to keep a quite well overview and the missions folder resp. their contents are
still the same as well. So read, try and edit yourself with this Guide through the World of
Armed-Assault.

Good luck and lot of fun with the Editor is wishing you BI, Morphicon and Mr-Murray.

4

Prologue

5

This guide is meant as an introduction to the Armed Assault Editor and shall make the
work with the Editor much easier, especially for the editing beginners. The scripts, which
are all shown here, are completely fictitious and can be further developed, of course.

The Editor offers much more possibilities than explained here in this book. That’s why I’d
like to insinuate the official Wiki:

http://community.bistudio.com/wiki

The Wiki is always up to date about everything related to editing, scripting and all around
Armed Assault. The basics are shown here and enable one to get an impression about
what the Editor is able to do. That shall help you to let your ideas come true. All scripts
which are shown and explained in the 6th Chapter can be found in the official forum.

www.forum.german-gamers-club.de

With this Guide I would like to say thank you to all Operation Flashpoint fans who are all
still keeping loyal to the game and I also would like to say thank you to Bohemia
Interactive Studios, because without those guys, that game - with such a mass of
possibilities - would never have been created. Furthermore, I would like to say thank you
to the Morphicon Team, especially to Morris Hebecker and Alexander Harlander for their
powerful support while realizing and marketing this book.

I would further like to say thank you to the whole Mapfact team, BadAss, Chneemann,
Flashpoint_K, JörgF., Kriegerdaemon, LockheedMartin$ch, MCPXXL, OneManGang, Silola,
Sniping-Jack, Raedor, Lester, Wüstenfuchs and our helping hands MemphisBelle, Simba,
Marco-Polo-IV and Sgt.Ace, who supported me through the last years very much.

A very special thanks is dedicated to Raedor and Chneemann who were always helping
me with trouble around ArmA. Furthermore, I like to say thank you to Andre Scheufeld for
the connection to Morphicon and Andreas Holzwart, Rastatovich and Wolle for their
amazing support. Real special thanks to the translator of this guide MemphisBelle and
his helping hands Metal0130 an Matt Rochelle for their very great revision support.

I also won't forget the people who are the most important to me; My family, my friends
and especially my girlfriend, without their support I never could finish the project.

Yours,

Sascha Hoffmann aka Mr-Murray

Annotation

I say thank you

I have decided one way or another to intergrate some community work into this book.
Because my guide already existed along with serveral versions and with the newest
publication I wanted the community to be apart of it. So I talked with Morphicon and we
both decided that a screenshot competition would be the best thing.

I thank you again to everyone who participated in the contest and I also thank the website
Armed-Assault.de for realising the importance of this competition.

The results of this competition can be seen in the proceeds of this book. Most of them
were placed on the single chapter directories, but many of them in the contents of each
chapter as well.

The following images are the ones which has been voted by the community for the first
three ranks. The winner are:

Winner 1: Marcus-Ergalla (Aljosha Rall)

Winner 2: Mr. Burns (Andreas Schmitz)

Winner 3: Stoned Boy (Frank Nobis)

6

Platz 1: Marcus-Ergalla

Community Screenshot Contest

7

Platz 2: Mr Burns

Platz 3: Stoned Boy

Chapter 1: The Beginning

1.1 The User Interface 13
1.2 Adding Units 14
1.3 Adding Groups 24
1.4 Adding Triggers 25
1.5 Adding Waypoints 28
1.6 Synchronize 32
1.7 Adding Markers 34
1.8 Rotating Units And Objects 37
1.9 Merging Units 37

1.10 Edit Units With Allocated Waypoints 38

Chapter 2: The Files

2.1 The Missions Folder 39
2.2 The Mission.sqm 41
2.3 The Description.ext 46
2.4 The Stringtable.csv 49
2.5 The Init.sqs 51
2.6 The Script (.sqs) 52
2.7 The Function (.sqf) 52
2.8 The Paa-Format 53
2.9 The PBO 54

2.10 The Sound Files 54
2.11 The Lip-Dateien 55
2.12 The Overview 56
2.13 The Briefing 57

Chapter 3: Weapons – Vehicles – Units – Objects

3.1 The Hand Weapons And Static Weapons 62
3.2 The Weapons Class Name List 66
3.3 Arm And Equip Units 68
3.4 The Weapon And Ammo Crates 69
3.5 Load And Unload Vehicles 69
3.6 Weapon Selection In The Briefing 70
3.7 The Vehicle Classes 71
3.8 The Unit Classes 74
3.9 Getting Weapon And Magazine Types Displayed 76

3.10 Getting Fired Type 76

8

Table Of Contents

Chapter 4: The Mission

4.1 The Mission Name 78
4.2 The Mission Start 78
4.3 The Mission Accessories 79
4.4 The Mission Appraisal 80
4.5 The Mission Targets 80
4.6 Finishing a Mission 82
4.7 Saving a Mission 84

Chapter 5: Mission Accessories

5.1 Empty or locked vehicle 88
5.2 Driver/Passenger of a vehicle 88
5.3 Unit is not allowed to enter a vehicle 88
5.4 Unit in vehicle? 89
5.5 Vehicle is moving only when unit has been entered 89
5.6 Group already in vehicle when the mission begins 90
5.7 Let a unit get in and get out of a vehicle 90
5.8 Speed of a unit 90
5.9 Make units move or stop 90

5.10 Unit keeps standing 91
5.11 Getting a unit started 91
5.12 Unit is moving to its destination 92
5.13 Running patrol, drive or fly 92
5.14 Escape behaviour of a unit or a group 92
5.15 Moving units, objects, triggers and markers 93
5.16 Placing objects higher or lower 93
5.17 The height of a unit 94
5.18 Accurate helicopter landing 94
5.19 Unit is moving into a building 94
5.20 Unit is leaving / joining group 95
5.21 Assigning a target to a unit 95
5.22 Unit turns to another Unit 96
5.23 Unit is selecting weapon 96
5.24 Inflict damage or heal a unit 96
5.25 Defining a death zone 97
5.26 Checking of an area 97
5.27 Bring about a certain behaviour of a unit in an area 97
5.28 Save or load a unit status 98
5.29 Degree of familiarity of a unit 99

9

5.30 Friendly enemy 99
5.31 Friendly forces 100
5.32 The alert 101
5.33 Dead as condition 102
5.34 Distance of two units or objects 102
5.35 Allocate a flag to a flagstaff 102
5.36 Burning fire 103
5.37 Add or remove switchable units 103
5.38 Read out and display player side, - name, -type 103
5.39 Oppress player input 103
5.40 Force the map on the screen 103
5.41 Adjusting distance of view 104
5.42 Adjust the weather 104
5.43 Adjusting date and time of day 105
5.44 Slow motion or time sprint 105
5.45 Generating units and objects 106
5.46 Generate flares, smoke and explosions 108
5.47 Delete units and objects 109
5.48 Adjusting radio menu 109
5.49 Allocate a call sign to a group 110
5.50 Send a radio message 111
5.51 Creating sound 111
5.52 Using own sounds 112
5.53 Set Identity 115
5.54 Mimics 116
5.55 The Action Order 117
5.56 The animation command 120
5.57 Disable AI units 122
5.58 SetVelocity 122
5.59 The information text 122
5.60 Units keeps lying or keeps standing 122

Chapter 6: Mission Specials

6.1 The Paratroopers 124
6.2 The GPS-System 125
6.3 The Action Menu Entry 126
6.4 The Backpack 126
6.5 Random Positions 130
6.6 The Mapclick 132
6.7 The Artillery 134

10

11

6.8 Deleting Killed Units And Vehicles 139
6.9 Suppressing Gaming Speed Constantly 140

6.10 The Bullet Mode 141
6.11 A Script To Track Down Enemy Units 142
6.12 The Air Strike 143

Chapter 7: Multiplayer

7.1 The Multiplayer Mission 147
7.2 The Respawn Points 147
7.3 Flexible Respawn Points 147
7.4 The MP-Description.ext 148
7.5 The Different Ways to Respawn 149
7.6 The Deathmatch 150
7.7 Defining the Multiplayer Area 150
7.8 The Class Header 151
7.9 The Respawn Dialog 152

7.10 The Vehicle Respawn 152

Chapter 8: Camscripting

8.1 Controlling the Camera 155
8.2 The Camera Coordinates 156
8.3 Creating A Camera 157
8.4 The First Scene 158
8.5 Patching the Camera On a Vehicle/Unit 160
8.6 Text and Blending Effects 161

Chapter 9: Scripting

9.1 The Variable 163
9.2 Logical Values 164
9.3 Logical Operators 165
9.4 The While-Do-Loop 166
9.5 The Counter 166
9.6 If-Then-Else 166
9.7 The Delay 167
9.8 Random 167
9.9 Waituntil 167 .

12

Chapter 1
- The Beginning -

This chapter will serve to provide you with an overview and detailed perspective of the
user interface of the editor. It will also get you ready for the following chapters. With the
help of this chapter you will receive a detailed explanation of the main functions of the
editor to obtain positive results. The main functions of the editor are as follows.

1.1 The User Interface 14
1.2 Adding Units 18
1.3 Adding Groups 24
1.4 Adding Triggers 25
1.5 Adding Waypoints 28
1.6 Synchronize 33
1.7 Adding Markers 34
1.8 Rotating Units And Objects 37
1.9 Merging Units 37
1.10 Edit Units With Allocated Waypoints 38

13

Arctic (Ronny Krischker)

C
h

ap
ter

1

The user interface of the editor is quite manageable and very user friendly as you can see.
You have the possibility to choose and edit the individual areas and sub-menus by using
the mouse, arrow keys and F-Keys.

In the Intel box you can define different things like weather,
time of day, seasons and on which side the RACS (Resistance)
fights. Furthermore there are two input fields at the top of the
menu. In the first one you can enter a name for the mission and
in the input field below you can define a short description. You
can also set the weather at the beginning of the mission and
define in which way it will change during the run of the
mission. The fog is adjustable, irrespective of the weather. The
rain level and the brightness according to the different daytimes will change by adjusting
the seasons. The days in the summer are much longer than in the winter, like in real life.

Intel

Name of the mission
Description of the mission

Date and time

Weather forecast
Current weather

Current fog

Forecasted weather

Forecasted fog

Side of the RACS (Resistance)

14

1.1 - The User Interface

F-Keys
Pressing the F-Keys (F1 - F6) enables one to enter the sub-menus. This section will give a
rough explanation of the different F-Keys, which will be explained individually and more
accurately later in this chapter.

15

C
h

ap
ter

1

1 Is needed to place units, vehicles, and objects
on the map and adjust them individually.

2 Contains two different features. At first it
enables you to place entire groups on the map
and furthermore it serves as a tool to connect
units and triggers with each other.

3 Triggers can be placed on the map by using the
F3-Key. The Triggers are both powerful and
flexible tools, which are needed for a number
of different actions. As an example, triggers can
be used to define the radio menu.

4 The F4-Key creates waypoints that will be
followed by groups or individual units.
Furthermore they will activate certain actions
at predefined places, dependent on the
definition.

5 Synchronization is a function that can be
overlooked quite easily even though it's a
useful function. It enables one to synchronize
waypoints and triggers with each other. For
example, a unit will not move to the next
waypoint until the trigger is activated.

6 The F6-Key opens the“Markers”sub-menu. The
markers provide a tactical view of the map, in
order to have a better overview over the
mission.

Mission
The first option, called "Mission", opens a sub-menu that contains several possibilities to
add special features to the mission. Each choice opens a new map. The first one is the
mission itself. The second one opens a new map to create the intro, and the third or fourth
ones open a new map to create the Outro - Win, or the Outro - Loose. It’s recommended
to use new maps for every single choice because it saves performance. And it also enables
a much better overview about the main map, because the intro and the outro units are
not located on the same map.

There is a further advantage, if the player doesn't like to watch the intro until it ends every
time he plays; he just needs to click it away by pressing the space bar. If the intro was
produced on the main-map, this would not be possible for him and he would have to see
the sequence until the end every time, which can cause him to lose motivation quickly.

Load
With the option“Load”, the mission will be loaded out of its destination folder in the ArmA
main directory. To do this, the mission needs to be saved into following directory.

C:\Files\ArmA\User\Missions

This folder is empty when the game gets installed for the first time. Every time the player
saves a new mission, the game creates a folder with its name in this directory. A final
edited mission that has been selected in the ArmA-main menu to play, are not able to
load in the editor again. This is because the game converts the mission folder into a PBO-
File and so it’s not possible to open this mission in the editor again. To do this, a special
PBO-Tool is needed.

Merge
Merging is similar to importing. Merging makes it possible to import other missions or
units, markers, objects, triggers and waypoints from another map into the current mission.
By using the Merge-Button everything on the map will get imported, but not the
contents of the mission folder.

The merging is quite useful if the player is editing a very complex mission that needs a lot
of time to load. If the player wants to add some prefabricated combinations, he just needs
to have them saved as their own file – which can be brought into the current scene using
the merge function.

Complex sceneries don’t need to be rebuilt every time again. This saves on performance
and gives some more motivation to the player when he uses several sub-missions as a
form of a database.

16

Save
Pressing the Save-Button in the editor menu will save the mission. Here you can decide
the method of how you want to save the mission, either as an editor mission or as a final
edited Multiplayer or Singleplayer mission. The editor mission will be saved in the
directory C:\Files\ArmA\Missions. The final edited MP or SP Missions will be saved in the
main directory. The Multiplayer missions will be saved in the folder“MP-Missions”and the
singleplayer missions will be saved in the folder“Missions”. You can see an example on the
picture below. There you can see the folder missions in your files.

Clear
Pressing the Clear-Button clears the map. She will set back into the default status. All
things on the map get deleted. Only the missions folder still exists.

Show IDs
By pressing the Show IDs-Button, all objects on the map will be displayed. Every single
object has a separate ID that it can be contacted with. It enables the user to do different
things to an object. He will be able to destroy it now or check whether it's still alive or
not.

Show Textures
This option enables all textures to be displayed on the map. Every variation, with
displayed textures or without, has certain advantages and disadvantages while editing.
Finally, every user needs to decide for himself how to best edit a mission.

Preview
By pressing the Preview-Button the user can enter the mission to get a first impression
of it. He also has the possibility to test several things.

Continue
Pressing the Continue-Button enables the user to go back into the last preview. But it
only contains the last version of the mission. Current changes are not visible at this time.

Exit
To close the editor and return to the main menu, just click on the Exit-Button.

17

C
h

ap
ter

1

The sub-menu of the units is displayed by pressing F1 or mouse clicking on the button
“Units (F1)”. To place the unit, just double-click on the map and the unit menu appears. The
user has many possibilities to create his favorite unit. It also enables the user place units,
vehicles, helicopters, airplanes, objects, and game logic.

Side Choice of side
East East Units
West West Units
Independent Resistance Units
Civilian Civilian Units
Empty Empty Vehicles
Logic Game Logic

Class Kind of units
Air Helicopter, Airplane
Ammo Weapons, Ammo
Armored Armored Vehicles
Car Cars, Motorbikes
Men Soldiers
Mines Mines
Objects Static Objects
Ship Ships
Sounds Sounds
Static Guns, Machineguns
Support Support-Trucks

Control - Player or Playable
With this menu the user needs to decide what kind of character he wants to play. Maybe
the user wants to play as this unit; or should this unit be playable or not playable (AI).

Playable units are needed while creating multi-player missions, that’s important because
later in the game, every player must have the ability to make a choice between different
units. If the user creates a single-player mission, playable units needed. If the gamer wants
to use character switch, the player is able to switch between the units to bring them to
different positions.

Player The player himself
Playable Playable unit
Non Playable Not playable unit

18

1.2 - Adding Units (1)

The player also has the additional possibility to decide which seat he wants to use in the
vehicle and set it immediately.

Player as Driver
Player as Pilot

Player as Gunner

Vehicle lock - Vehicle settings

Default
Locked

Unlocked

To adjust this by an external script or by using Initialization box use the following syntax:

NNaammee lloocckk ttrruuee - Vehicle locked
NNaammee lloocckk ffaallssee - Vehicle unlocked

Rank - Rank of the respective unit
The rank of each unit can be set here. The unit with the highest rank will be the leader of
the group automatically.

Private
Corporal
Sergant

Lieutenant
Captain

Major
Colonel

As follows you can see the syntax to set the rank of a unit:

Player setRank "Sergant"

Unit - Class of unit
After adjusting the units, whether it’s a soldier or a vehicle, the specification of the class
is possible here. The choice in the sub-menu is always up to the class decision. The user
has several choices in the section "Men" because he can make a decision between
different types of soldiers – from the assault rifle soldier to the grenadier, on up to the
sniper; these are only a few of the types available. The same is possible with the vehicles.

19

C
h

ap
ter 1

Special - Particularities of a unit
This option enables the adjustment of several settings that often get ignored by the user.
It also enables the user to start the mission while flying a helicopter or airplane.

None If the user places a unit on the map and sets the option "None",
then this unit will move to the leader’s position even when she’s
far away from the leader’s position.

In Formation If a unit has been placed on the map as a part of a group,
with the option "In Formation", then the game places this
unit next to the position of the leader.

In Cargo When the player sets a group on the map, with the option "In Cargo",
and one of its units is a vehicle (this unit must not be the leader)
then all units of this group will sit in the vehicle when the
mission begins.

Flying All flying units are already in the air (flying) when the mission
begins.

Name - Name of the unit
The name of the unit or the object will be displayed here. This is very important to
communicating with this unit while working with scripts, triggers and waypoints.

Skill - Skills of the unit
The abilities of a unit are defined here. This option allows setting the level of skill between
0 and 1. The level 0 means silly and 1 means very good.

Name1 setSkill 0.8

Name1 setUnitAbility 0.6

It’s also possible to set a random skill. To do this, following syntax needs to be defined in
the initialization box (Init box) of the unit:

this setSkill (random 0.6)

Now the unit will get a random skill between 0 and 0.6.

20

Azimut - Direction of view of an unit
This sets the direction of view for a unit when it has been placed on the map. The unit will
look in the predefined direction after the user has pressed the OK-Button.

If the user wants to spin the unit around after pressing OK because the units direction is
still not the right one, so he can adjust the direction by using the left mouse button and
shift-key. To do this, don’t double-click on the map to enter the menu, just click the left
mouse button to select the respective unit. Then press and hold the Shift-Key. Now move
the mouse to change the direction of view.

To spin several units or objects, the same principle is applied. To do this, all units needing
direction change need to be selected by the user. To change the direction, the mouse
only needs to get moved with pressed left mouse-button and holding shift.

Another possibility to spin a unit in a sequence would be:

Name setDir Value

Name setFormDir Value

The value can be copied out of the sub-menu of "units" by pressing Ctrl+C. Then paste it
into the script (instead of North).

Initialization - The initialization-line
Every unit and every object has an initialization line. Orders that are located there will be
executed by the game immediately. Scripts can be defined here. They will be executed by
the game immediately as well. There is a possibility for players / users to make it easier.
They only need to create a text file called Init.sqs in the missions folder. The Init.sqs will
be executed by the game without a predefined Syntax. Every definition of the unit can be
placed into the Init.sqs. You will find a more accurate explanation in Chapter 2.

It´s also possible to define an entry in the init line of a unit while a mission is running. To
do this one only needs to use a setvehicleInit-order, and to call it processInitCommands

Player setVehicleInit "Player say 'Sound1' "; processInitCommands;

Description - The information line
Names and descriptions of the unit can be typed into this line. This description will be
displayed if the unit is defined as a switchable unit, and the switch menu will open.

21

C
h

ap
ter 1

Health / Armor - The health status
The status of health and armor of a unit will be set by using the slide control. Injured units
can be placed on the map this way. Vehicles can also be used as wrecks if the armor is set
to zero. The value can be set between 0 and 1. 1 is fully damaged and 0 means no
damage. There is a further syntax available which will be defined in the unit submenu.

NNaammee sseettddaammmmaaggee 11

The unit, tank, or object would have an amount of damage of 1 and would be dead or
destroyed. This value can be reset by using the Syntax:

NNaammee sseettddaammmmaaggee 00

The unit would be reanimated or repaired again. Of course it’s possible to use interim
values. By using the value 0.5 the unit would not be repaired completely.

Support:
Support vehicles like fuel, ammunition, and repair trucks can get a value of 0 to 1. If the
value set to 0, then this vehicle will not to be used again to offer repair, refuel, or
ammunition support. The Syntax:

NNaammee sseettRReeppaaiirrCCaarrggoo 11
Reassigns a new repair-value to a repair truck.

Fuel - The fuel-status
The quantity of fuel of a vehicle is to set here. It’s possible to define it by syntax as well:

Name setfuel 0 - Empty fuel tank

Name setfuel 1 - Fuel tank is full

Support:

Name setFuelCargo 0.3 - Allocates a value of amount of fuel to a vehicle

Ammunition - The ammunition status
Adjust the amount of ammunition that a unit has at the start of a mission.

Support:

Name setAmmoCargo 0.7 - Allocates a value of amount of ammunition
to a vehicle.

22

Probability of presence
This option sets the probability of presence of a unit in percent. If the slider is moved to
the middle, there is a 50% chance that the unit will appear on the map. This makes the
mission dynamic, because it’s not possible to know whether a unit is displayed on the
map or not.

Condition of presence
A unit will only be present on the map when a condition has been executed. This
condition is always checked by the game when the mission begins. If Cadetmode was set,
the unit will be displayed in the Cadetmode only.

Placement radius
When the mission begins, the unit will spawn in a random location within this radius.

Info-age - degree of familiarity
Info-age defines the degree of familiarity of a unit. This option tells what the player knows
about opposing units and how current this information is. The following selections are
available:

"ACTUAL" "5 MIN" "10 MIN" "15 MIN"

"30 MIN" "60 MIN" "120 MIN" "UNKNOWN"

It is also possible to define the info-age by using a syntax. This is what it would look like:

Player setTargetAge "10 MIN"

23

C
h

ap
ter 1

By pressing the 2 -Key the user will activate the sub-menu groups. It enables the user
to place whole groups on the map. After he decides which side to place units for, he can
then make a choice between infantry units, tanks or helicopter groups. This possibility
saves a lot of time, because not every unit needs to be placed on the map individually. The
groups are all predefined, but the user does have the ability to edit the group as he wants.
This makes it possible for him to add or remove single units. He can also change the
classes of each single unit.

Once one has decided on a side for the units, one has to make some selections. The option
"type" offers the type of units, such as infantry, tanks, or helicopter groups. By using this
option it is possible to set a whole group quite fast.

At the option Name, it’s possible to make a choice between 5 different types of groups.

East and West both have 5 different classes of infantry squads available for use.

Basic Squad - Merged infantry squads
Weapon Squad - Smaller Infantry squad
Special squad - Special Forces
Motorized Patrol - Infantry squad with APC
Mechanized Squad - Infantry squad with APC

In the same menu as Infantry Squads, are Tank Platoons and Helicopter Squadrons.
If an air unit needs to be flying when the mission begins, the user needs to set the
formation to “Flying”.

The direction of view needs to be adjusted by setting the Azimut again.

24

1.3 - Adding Groups (2)

The trigger can be used as an on/off switch or as a checking-tool. It also enables the user
to implement radio menus from Alpha to Juliet. Triggers and waypoints aren't that
different from each other. The trigger enables the user to activate or stop certain actions.
There is also the possibility to add sounds, music or other resources (such as video clips)
by using the sub-menu "Effects" on the trigger menu.

The user has the possibility to activate scripts or similar things when the character is
entering a trigger area. When the character is leaving this area again, those scripts can be
deactivated again.

A trigger can also be used as a ruler when the user wants to place several units next to
each other. To do this the axis A needs to get the value 100 and the axis B needs to get
the value 1 for example.

Axis A /Axis B Size and area of the trigger

Angle Angle of the trigger

Ellipse/Rectangle Form of the surface

Once/Repeatedly One-or multiple-
activations

Activation by West
East
Resistance
Civillian
Gamelogic
Anybody
Radio A–J
Captured by West
Captured by East
Captured by Resistance

The way of activation

Present A trigger will activate its actions when a unit is entering this area.
An example: (Unit=East Activation=East).

Not present All actions will be disabled if this east unit is leaving the trigger
again.

Detected by Detected by west, east or civilians. Trigger will be activated if the
unit of the defined side is detected within the area of the trigger.

25

C
h

ap
ter 1

1.4 - Adding Triggers (3)

Countdown/Timeout - Counter
Within this menu the user can set the time distance between a unit entering an activation
area, and the activation of that trigger. The possibility to add a minimum, middle, and a
maximum value to the timeout function can make the mission much more dynamic.
When all three values are defined, the activation of the trigger will happen at a random
time between the set values. If the minimum, middle and maximum values are all set to
the same value, the trigger will activate when the timer runs out.

Type:

None
Guarded by West
Guarded by East
Guarded by Independent
Switch
End 1 till End 6
Lose

Text - The trigger text
The user can enter a specific description of the trigger. The user needs to write the
description into the text box. This possibility enables better organization on the map,
especially if several triggers were used. The user mustn’t open every single trigger to get
the information about what each trigger does. Furthermore, the text for each radio
message is to be defined here. If the user creates more radio messages, then he can see
the messages on the radio individually.

For example:

Trigger 1: Activation: Radio Alpha
Text: Request Artillery

Trigger 2: Activation: Radio Bravo
Text: Request Support

Both of these lines of text would be displayed on the radio now. This enables a better
overview and orientation.

Name - The trigger name
To communicate with the triggers the user has to enter a name into the text box next to
"Name" - for example, if the user wants to move or delete it later. You can get more
information about moving and deleting triggers on the following page.

26

Condition - Activation condition
A condition is a powerful tool, which enables the trigger to check several things. The
trigger would be activated only if a condition was executed. A condition can be used in
many ways. It’s also possible to use both variants: Use of a variable or checking of a
condition.

Use of a variable
The trigger will be activated if a condition was executed first. If attack would be placed as
a variable into the OnActivation-Box, the trigger is waiting until this variable has been set
on true, to activate itself.

To set the variable “Attack” to true, it has to be defined in a trigger, waypoint or a script.
To do this following Syntax is needed:

Attack=true

To activate the syntax, “Attack” has to be set on “true” in the OnActivation-Box of the
trigger, waypoint, or written in a script. The action defined will be activated now.

Verifying a condition
A further possibility is to check whether a condition was executed or not. A variable is a
condition that needs to be checked and executed as well. This means, that the condition
is checking the actions of a unit. For example: Is unit A still alive, is unit B sitting inside
Jeep1. That would looks like this:

Condition: Player is sitting in Jeep1:

Player in Jeep1 or Vehicle Player == Jeep1

Condition : Soldier1 not alive:

Not alive Soldier1 or !(alive Soldier1)

On Activation
Nearly all actions that can be activated when the trigger gets executed are to be defined
here in this box (for example, the starting of a script or setting a condition on true etc.).
The user can enter nearly all Syntaxes that are available in ArmA. But this option does
have its borders as well, and so sometimes it is better to use scripts. The use of scripts
helps the user stay more organized than having triggers all over the map.

27

C
h

ap
ter 1

On Deactivation
It’s also possible to activate a trigger when it actually gets deactivated. The following
example serves as an example of an entry in the action menu, as variant to explain what
it means. If the player is entering a trigger area, then a further option, called "entry", will
be add to the action menu. This entry will be deleted when the player leaves the trigger.
To do this just enter:

oonn AAccttiivvaattiioonn:: IIDD==PPllaayyeerr aaddddAAccttiioonn [[""EEnnttrryy"",,""ssccrriipptt..ssqqss""]]
oonn DDeeaaccttiivvaattiioonn:: PPllaayyeerr rreemmoovveeAAccttiioonn IIDD

Move or delete triggers
When it’s needed, the user can move or delete a trigger. But to make sure that it works,
the trigger has to be equipped with a name first. That’s important to speak to the trigger
directly. The following syntax is needed:

TriggerName setPos getPos Name

The user can otherwise use coordinates. That syntax would look like this:

TriggerName setPos [x,y,z]

28

1.5 - Adding Waypoints (4)

Waypoints are not only needed to set a
route where a unit shall move, the user
can also use a waypoint to set behavior,
formation, Combat mode and speed.

The waypoint can be similar to a trigger
in function.

When the unit reaches it's next
waypoint, code can be activated and
executed upon arrival.

But there are a lot more possibilities,
such as having sound effects or music
played at a predefined waypoint.

C
h

ap
ter 1

Select type - The actions
The user can set individual settings for each waypoint that will be executed when the
unit reaches the waypoint.

Move
Destroy
Get in
Seek and destroy
Join
Join and lead
Get out
Cycle
Load
Unload
Transport unload
Hold
Sentry
Guard
Talk
Scripted
Support
Get in next
Released

Clarify particularity
If the user allocates a waypoint to a unit with these conditions, then the unit will move to
this point and wait for enemy contact before she’s moving on to the next one.

Waypoint order
The player can get an overview about all waypoints by clicking this option. It's also
possible to change the sequence of waypoints in retrospect.

Description
This is the description of a waypoint. Descriptions will be shown in the Cadetmode only.
It makes playing for beginners easier, especially by playing huge and complex missions.

For example: Destroy the target

29

Combat mode
The combat mode of a unit is defined here:

Never fire Blue
Hold fire Green
Hold fire, engage at will White
Open fire Yellow
Open fire, engage at will Red

To define these behaviors by script use following Syntax:

Name setCombatMode "Blue"

Behavior
To define the behaviour of a single unit or a whole group, the following options are
available:

Careless
Safe
Aware
Combat
Stealth

This behaviour is definable by script as well. The syntax is:

Name setBehaviour "Careless"

Formation
Special formations are needed on the battlefield while fighting in special situations. These
formations will be shown in the examples below. The group leader is always marked in green.

Columm Staggered Columm

Wedge Vee

30

Echelon Left Echelon Right

Line Delta Column (compact)

It’s also possible to set the formation of a unit by script or trigger. The syntax will be:

Name SetFormation "Line"

Speed
The speed of a single unit will be defined individually at every waypoint. It’s possible set
a unit to move fast to waypoint 1 and move slow to waypoint 2. There is a choice between
3 variants.

Normal / Limited / Full

And we have the possibility to define this in a script as well. The syntax is:

Name setSpeedMode "Limited"

Placement radius
The placement radius of a waypoint offers more dynamics to the game, because the
waypoint will be set at random to a location within this radius. This means, that when the
user enters the value 100 for example, the game will set this waypoint within a radius of
100 meters.

Timeout
The delay until the trigger executes its actions, in seconds. If the minimum, middle and
maximum values are all set to the same value, the trigger will activate when the timer
runs out. But if the values are different from each other then the trigger will activate its
actions randomly.

Min Minimum time until activation
Max Maximum time until activation
Mid Middle value

31

C
h

ap
ter 1

The use of random values adds a lot of excitement to the game, because the user doesn’t
know when the unit will reach its destination. The user has a much more dynamic mission
by combining placement radius and condition of presence, because the user will no
longer be able to say whether the unit exists or not, or which place she’s moving to and
finally when will she will arrive. Even dynamic missions have a high rate of suspense and
this makes the missions much more replayable. ArmA has the best conditions to create
missions as dynamically as possible.

Condition
The use of a condition allows a waypoint to change its status depending on whether the
condition is true or not. Using a condition makes it possible to set a waypoint to "stand
by" or to let it check something. That waypoint would be activated when the condition is
true, but if the condition has not been met, the waypoint will remain inactive. The use of
a condition has been explained in sub-section Chapter 1.4 – Adding Triggers.

On Activation
In this line it’s possible to define everything that shall be executed when the unit is
reaching a waypoint (e.g. starting scripts or setting variables to true etc.) It enables the
user to enter every syntax that is compatible with ArmA. It has its borders as well, so the
user should use scripts sometimes. Scripts just help keep the mission editor clean by
keeping the code in external files.

Script
This line enables the user to use code, which would only be used in scripts.

Show Waypoint
It’s possible to show or hide waypoints. The user can define here whether they are only
visible in Cadet Mode, general, or not visible.

Never Show

Show in Cadet Mode

Always Show

Join and lead
It’s possible to bring several groups together. This is possible at any point on the map as
well. Every single unit gets its own waypoint somewhere on the map. The first one should
be defined as Join and the other one as Join And Lead. Both waypoints only need
synchronization now. The user has to press the 5-Key to do this. Now both waypoints
get synchronized with each other. If both units will reach their destinations and are still

32

alive, they will come together as one group now. It will only work if the groups are not too
big. ArmA allows up to 144 units to a group including their leaders.

The option “Synchronize” offers the possibility to connect waypoints with waypoints or
waypoints with triggers. It enables the units to remain in the same formations and the
user does not have to use too many variables.

You can see 2 units in the picture below. Both units are coming from different directions
but they have the same target. Unit 1 has to wait at its waypoint until unit 2 reaches its
waypoint. To do that, the user has to press the 5-Key to choose synchronize mode.
Then, the user needs to click and hold on the waypoint 1 by using the left mouse button;
pulling the mouse from waypoint 1 to waypoint 2 creates a blue line. It’s important to
hold the left mouse button while doing that. When finished, a blue line connects both
waypoints with each other. When unit 1 arrives at her waypoint, she’ll wait there until unit
2 arrives at her destination.

33

C
h

ap
ter 1

1.6 - Synchronize (5)

The trigger-waypoint combination works the same way. The groups will only move on
when the trigger is executed. It’s not necessary to allocate a variable to the unit at the
waypoint (like Grp1go for example). Enter the command Grp1go=true into the
OnActivation box of the trigger so that the group runs forward if the trigger is executed.

It doesn’t make any difference whether the trigger is executed by an object or radio. The
5-Variant is much faster and easier to handle.

Three groups and a radio trigger will get synchronized with each other in the picture
below. If all 3 groups have reached their positions the user only has to give the order to
attack by using Radio 0-0-1. The units will move to the next position, the target.

The markers are necessary to create a tactical style on the map. The markers are showing
the player the course of the mission, the targets, and more information that makes the
mission more interesting. It enables the user to get a better overview over the whole
mission. It’s necessary to give a name to each marker because those markers can be linked

34

1.7 - Adding Markers (6)

C
h

ap
ter 1

into the briefing with their positions on the map. If the player clicks on a link in the briefing
the crosshair will move to the position of the marker on the map.

Name
The name of the marker will be entered in this box, which will be needed later for the link
with the briefing (to move the crosshair over the map by clicking on a link in the briefing
text). It’s also needed to move markers from one position to another or change them to
another symbol.

The kinds of markers
There are 3 different ways to set a marker on the map. The first one is the single icon. The
second one is a rectangle and the last one is a cycle. With the last two choices it’s possible
to mark whole enemy or friendly areas.

Color
Markers can be several colors. The following colors are available:

Red, black, green, blue, yellow and white

Symbol
Here is an overview of the different tactical signs with their descriptions:

35

It’s possible to create a much more complex map by combining area markers
(Ellipse/Rectangle) with tactical signs. Here you can see a list with all markers which are
selectable by default in the game.

Objective (Flag) Join
Flag1 PickUp
Dot Unknown
Destroy Marker
Start Arrow
End Empty
Warning

Axis A/Axis B
The user can define the size of the marker here.

Angle
The user can define the angle of the marker here.

Text
To make the description of the marker visible on the map, the text needs to be entered
in this box. For example: Target Alpha. It’s possible to set the marker as the name of the
player or the unit by using following syntax:

"S1M" setMarkerText Name S1

The game automatically selects the player name of the unit that is named S1.

Move or delete a marker
It’s possible to make several changes to the markers. The user can move, delete or change
the symbol while the game is running. The execution of a missions target shall serve as
an example here. So it would be possible to delete the marker or change the color of the
respective marker from red to green.

A marker needs to be named first. To explain the following syntax examples, the marker
will get the name Marker1. Now there are lots of possibilities to communicate with the
marker. One can do this by using waypoints, triggers or even scripts. To do this, the
following syntaxes can be used:

Marker will set to position [x,y]:

"Marker1" setMarkerPos [x,y]

Marker will set to position from Name:

"Marker1" setMarkerPos getPos Name

36

Marker will be set to position of Marker2:

"Marker1" setMarkerPos getMarkerPos "Marker2"

Defines kind and style of the marker:

"Marker1" setMarkerType "Start"

Changing the color of the marker:

"Marker1" setMarkerColor "ColorBlue"

Changing the size of the marker in [height, width]:

"Marker1" setMarkerSize [2,4]

Deleting the marker:

deleteMarker "Marker1"

To twist whole groups, objects or single units it’s necessary to select them first. Then the
user needs to press the Shift-Key, click and hold the Left Mouse Button while moving
the crosshair by using the mouse until the object is turned towards the desired direction.
It’s possible to turn more than one object, unit or group by selecting all units on the map
that need to be turned.

In the editor it’s possible to bring single units to whole groups together. It’s also possible
to divide them from each other again. To do this the user has to select the section “Groups”
by pressing the 2-Key. Then the units need to be selected by clicking and holding the
left mouse button while moving the mouse. The same method is used to divide a group
into its single units. The user only has to click into an empty space on the map.

Furthermore, it's possible to combine a unit or an object with a trigger to make sure that
this trigger will only be executed by this unit or object. In the left hand picture you can
see how a unit will be combined with a group, and on the right picture one can see that
a trigger was placed on the map which was used by a vehicle.

37

C
h

ap
ter 1

1.8 - Rotating Units And Objects

1.9 - Merging Units

If a unit already has a waypoint allocated to it, then the user will notice that the waypoint
menu always opens after double-click, but not the unit menu.

To edit the unit after she already has a waypoint allocated, the user has to press the Shift-
Key while double-clicking on the unit. Then the unit menu will appear.

38

1.10 - Edit Units With Allocated Waypoints

Chapter 2
- The Files -

After being introduced to the user interface in Chapter 1, this chapter will lead you
another level down into the system of the game. I will explain to you the individual files
which are important when creating a mission. Important information will be saved and
configured here.

2.1 The Missions Folder 40
2.2 The Mission.sqm 41
2.3 The Description.ext 46
2.4 The Stringtable.csv 49
2.5 The Init.sqs 51
2.6 The Script (.sqs) 52
2.7 The Function (.sqf) 52
2.8 The Paa-Format 53
2.9 The PBO 54
2.10 The Sound Files 54
2.11 The Lip-Files 55
2.12 The Overview.html 56
2.13 The Briefing.html 57

39

Legislator (Daniel Bötticher)

C
h

ap
ter 2

The missions folder contains all important files which are needed for a mission. It’s
necessary to create more folders to stay organized. So, it is recommended to create one
folder for every file-type individually. For example: music, scripts, sceneries, pictures and
so on. It’s also important to write the data types in lowercase letters. On the picture below
you can see a final edited missions folder:

As one can see in the example above, this folder contains all important files which are
needed for a mission. Furthermore you will have a better overview over your files. The
filenames in this example are all predefined and not variable! The title image and the
folder names are the only ones which can be named differently from the other files. The
file-types are explained here:

Mission.sqm Mission coordinates
Description.ext Mission configurations

(Music, Sound, Weapons, Identity, Resources etc.)
Stringtable.csv Enables the user to display text by a shortcut only
Briefing.html Contains the briefing text
Overview.html Mission info in missions selection menu
Title.paa Overview image

Different briefing files are needed to display the briefings in several languages. But if one
wants to create his mission in one language only, he only has to use the briefing.html. It
doesn't matter in which language the briefing file is defined. You can get more
information in this chapter, in the sub area The Briefing.html. It’s up to the player how
the following folders will be named

Music For music files
Sound For sound files (e.g. Languages, Effects)
Scripts For scripts (.sqs)
Scenes For the cut-scenes (e.g. Intro, Outro etc..)
Function For the functions (.sqf)
Pictures For the images (e.g. Title.paa)

If one wants to open a file out of the sub-folders, the user only needs to define
the respective folder in the syntax, backslash and then the respective filename.
E.g. to run a script:

[] exec “scripts\script.sqs“

40

2.1 - The Missions Folder

The Mission.sqm contains all important coordinates which display the objects, units,
triggers, waypoints and markers on the map, so it is the most important file in the mission.
Furthermore there are several pieces of information located at the top of the Mission.sqm
file such as additional add-ons or the mission name, weather and the time of day which
are defined in the intel box in the editor.

These explanations might be a little difficult to understand first, but they shouldn’t deter
one from editing his or her own missions. The player does not have to know every single
part of the Mission.sqm, but it’s quite useful to know what the options represent.

The first part
On the following page one can see the beginning area of the Mission.sqm in the section
"Class Mission" which is located in the top of the mission.sqm script. The used add-ons
are listed first. These add-ons are original ArmA-add-ons.

Attention! When the mission begins, if an external add-on is loaded which has an
improperly configured Config.cpp, it might happen that this add-on will be registered in
this list although it will not be used in the mission. But it’s possible to mark and delete it
(The Mission.sqm needs to be opened with the Notepad text editor).

The problem begins if another player wants to play this mission and hasn’t installed this
external add-on. The mission will not be able to start, and the mission download was for
nothing. This problem happened many times in Operation Flashpoint. The player who
does not know much about editing will get frustrated quite fast and will download
another mission.

Following the Addons is the class Intel which also contains:

Briefing name

Resistance settings

Starting weather

Forcasted weather

Forcasted fog

Distance of view

Date

Time of day

41

addOns[]=
{

"cacharacters",
"sara",

};
addOnsAuto[]=
{

"cacharacters",
"sara"

};
randomSeed=8635907;
class Intel
{

briefingName="@STR_M11_Name";
resistanceWest=0.000000;
startWeather=0.000000;
forecastWeather=0.000000;
forecastFog=0.375187;
viewDistance=1000.000000;
month=6;
day=2;
hour=3;
minute=50;

};

C
h

ap
ter 2

2.2 - The Mission.sqm

Next to the Class Mission are the Class Intro, Class OutroWin and Class OutroLose,
which are built same as Class Mission. The units, waypoints and so on for the respective
sequences are defined there.

It’s possible to make changes directly in the mission.sqm, but its quite important to make
changes correctly. If the player wants to test the mission later in the editor, it needs to be
re-loaded to use the updated mission.sqm

If the game is crashing down, there might be a mistake in the script. It is quite useful to
make a backup of the original Mission.sqm to make sure that a working version is still
available.

Units- and object classes
The sub areas Class Groups and Class Vehicles are located in the main Class Mission. In
these sub areas, the related units, objects and waypoints are defined:

As you can see all information for the unit named S1 is defined here. You can see the
elucidation of the concept here:

Items=1 Display the numbers of items of the Class Groups.
Number of the total groups of all sides of a map.

Class Item0 Is the group 0, or the first group. The next group would be
named Class Item1

Side The side of the respective group. Even a single unit will be
defined as a group!

Class vehicles Explains to the user that it is a vehicle
Items=1 The number of items (units) of the group Class Item0

42

class Groups
{
items=22;
class Item0
{

side="WEST";
class Vehicles
{

items=1;
class Item0
{

position[]={7973.895020,4.460081,9351.659180};
id=0;
side="WEST";
vehicle="SoldierWB";
player="PLAYER COMMANDER";
leader=1;
rank="CORPORAL";
skill=0.200000;
text="aP";
init="this addWeapon ""binocular"";

};
};

};

Class Item0 Class Item0 is leader of the group Class Item0. The subordinated
soldier to the leader is Class Item1, the next one, Class Item2
and so on.

Presence Probability of presence (Not the player!)
Position YXZ-Coordinates of the player in order X ZY
Azimut Line of vision of the unit (definable value from 0 to 360)
ID ID of the unit
Side Respective side
Vehicle The type of the unit
Player Himself
Leader Says whether the unit is leader
Skill Ability of the unit (definable value from 0 to 1)
Health Health status (definable value from 0 to 1)
Ammo Ammunition status (definable value from 0 to 1)
Text Name of the unit (Variable)
Init The init-line of the unit (needs a syntax to execute)

Waypoint classes
The waypoints are organized into their respective groups. This class is similar to the units,
but different in composition.

As one can see, all of the information for each waypoint is defined here, so each waypoint
looks different from another. It is up to the player how to define them. Explanation:

Items=1 Displays the numbers of items of the Class Waypoints, this is the
number of waypoints in the group.

Class Item0 Class Item0 is the first waypoint. The second waypoint would be
named Class Item1, the next would be Class Item2 aso.

43

class Waypoints
{
items=1;
class Item0
{

position[]={7970.289551,4.731988,9346.483398};
placement=50.000000;
CombatMode="RED";
Speed="FULL";
combat="COMBAT";
description="Hold this position!";
expActiv="[] exec""scripts\script.sqs";
class Effects
{
timeoutMin=10.000000;
timeoutMid=3.000000;
timeoutMax=30.000000:
};
showWP="NEVER";

};
};

C
h

ap
ter 2

Position Coordinates of the waypoint, in order XZY.
Placement Is the random positioning-radius of the waypoint.
CombatMode The respective fight-mode of the group of this way-point.
Formation The respective formation of the group of this waypoint.
Speed The speed of the group of this waypoint.
Combat The respective behavior of the group at this waypoint.
Description The description will be displayed when the waypoint is shown

in-game.
ExpActiv The On Activation field, which will be executed when the trigger

is activated. In this example, a script with the name script.sqs
will be executed from here.

TimeOutMin The minimum time to execute the waypoint.
TimeOutMid The middle time to execute the waypoint.
TimeOutMax The maximum time to execute the waypoint.
ShowWP Explains whether the waypoint will be displayed in the game or not

No effects have been defined at this waypoint, these effects are explained in the trigger
classes.

Marker Classes
Their classes of the markers are located right behind the group and there respective
waypoints. All markers set on the map will be listed here. Here is an example:

The explanation of the points is shown here individually:

Items =1 Displays the number of items of the class marker. Therefore the
entire number of triggers on the map.

Class Item0 Class Item0 is the first trigger. The second trigger would be
called Class Item1, and the very next trigger would be called
Class Item2 and so on.

Position YXZ-Coordinates of the markers in the order of XYZ.

44

class Markers
{

items=28;
class Item0
{

position[]={2452.061035,0.760200,3673.595703};
name="TargetOne";
text="Objective Alpha";
type="Flag";
a=2.000000
b=2.000000
angle=0.100000

};
};

Name The name of the marker.
Text The description of the marker which will be displayed later on the map.
Type The type of the Marker. In this example, a cross-hair is displayed.
a The size of the marker in the X - direction.
b The size of the marker in Y - direction.
Angle The angle of the marker.

Trigger Classes
The class markers are actually right behind the group and object classes. All markers
which have been placed on the map will be displayed within this position of the script.
One can see an example below:

Items=1 Displays the number of items of the Class Sensors,therefore the
whole number of the triggers on the map.

Class Item0 Class Item0 is the first trigger. The second one would be named
Class Item1 and the very next - Class Item2 and so on.

a The size of the trigger in X-direction.
b The size of the trigger in Y-direction.
ActivationBy Activation by “WEST”.
TimeOutMin The minimum time to execute the trigger.
TimeOutMid The middle time to execute the trigger
TimeOutMax The maximum time to execute the trigger.
Age Unknown
Name The name of the trigger.
ExpCond The condition of the trigger. E.g. the Variable Var1
ExpActiv The activation field of the trigger, which will be activated when

the trigger is executed. In this example, a script named Script.sqs
will be activated here.

ExpDesactiv The deactivation field of the trigger. The trigger can be
deactivated here again. In this example, a script named
animation-end.sqs will be activated here.

45

C
h

ap
ter 2

class Sensors
{

items=53;
class Item0
{

position[]={8012.703613,6.300000,9301.049805};
a=100.000000;
b=100.000000;
activationBy="WEST";
timeoutMin=10.000000;
timeoutMid=3.000000;
timeoutMax=30.000000:
age="UNKNOWN";
name="DetectorOne";
expCond="Var1";
expActiv="[] exec ""scripts\script.sqs""";
expDesactiv="[] exec ""scripts\animation-end.sqs""";

};
};

The Description.ext is as important as the Mission.sqm for our mission. The specifications
of units and objects are not defined here, but the description will provide a lot of other
helpful information. It is important to define important things such as music, sounds,
respawn resources, weapons selectable from the briefing, accessories like the compass,
and several other things which are needed in the game.

The Description.ext has to be placed in the missions folder of the respective mission. To
do this one needs to open a text file and rename it Description.ext. It's quite important
to edit this file with Notepad (Text File Editor) or Notepad++ only. Never use Word or Excel!

The Description.ext will only be explained roughly. If you want to know more about
special possibilities of the Description.ext, just use the explanations in the different
chapters where these sub points are more thoroughly defined.

Mission Start Text Chapter 4.2
Distribution of points Chapter 4.4
Identities Chapter 5.53
Music Chapter 5.52
Sound Chapter 5.52
Respawn Chapter 7.2
Weapon selection in the briefing Chapter 3.6

It’s not necessary to implant all of these possibilities in the file, but this is up to the mission.
One has to use the ones which are needed for the mission, this saves not only a lot of
work, but it also enables one to avoid errors in the mission. It’s quite unnecessary to use
respawn in a single player mission for example.

Furthermore it is very important to make sure that all clasps { which were opened are
closed again }, otherwise ArmA will crash promptly. There are other mistakes that will
make the game crash as well, so it’s quite important to work carefully.

To hide or make available additional mission accessories like the compass or the watch,
one only needs to do this by the parameter 1, or true, for active/visible or by using the
parameter 0, or false, for inactive / invisible.

One has the possibility to define special comments behind "//" or a semicolon. ArmA will
ignore these marks. These marks are used to create special explanations inside a script to
make some things more understandable or to keep a script organized.

If changes were made in a script or the description which one has created, one needs to
save, and then restart the mission before the changes will take effect. If the game crashes
don’t lose your patience, this just requires more troubleshooting. It’s quiet necessary to
define every paragraph individually, so one always knows which paragraph might be the
one which contains the error.

46

2.3 - The Description.ext

In the picture below, one can see how to define a Description.ext:

47

// ====================== Description.ext =====================>
Debriefing = 1;
OnloadIntro = 1;
OnLoadIntroTime = 1;
OnLoadMissionTime = 1;
Saving = 0;
// === Titlecut ==>
OnloadIntro= B I S T U D I O p r o u d l y p r e s e n t s
onLoadMission= A R M E D A S S A U L T
// === Points ==>
minScore=200
avgScore=2500
maxScore=6000
// === Missions Accessories =======================================>
ShowCompass = 1;
ShowMap = 1;
ShowGPS = 1;
ShowWatch = 1;
// === Respawn ===>
respawn=3;
respawn_delay=10;
// === Weapons ==>
class Weapons
{

class M4
{

count = 4;
};
class Javelin
{

count = 2;
};

};
// === Magazines ===>
class Magazines
{

class 20Rnd_556x45_Stanag
{

count = 10;
};
class Javelin
{

count = 6;
};

};
// === Music ==>
class CfgMusic

{tracks[]= { Track1,Track2};

class Track1
{

name = "Track1";
sound[] = {\music\track1.ogg, db+0, 1.0};

};
class Track2
{

name = "Track2";
sound[] = {\music\track2.ogg, db+0, 1.0};

};
};

C
h

ap
ter 2

48

// === Sounds ===>
class CfgSounds
{

sounds[]= {Sound1};
class Sound1
{

name = "Sound1";
sound[] = {\sounds\sound1.ogg, db+0, 1.0};

};
};

// === Radio ==>
class CfgRadio
{

sounds[] = { };
};

// === Environment ===>
class CfgSFX
{

sounds[] = {};
};
class CfgEnvSounds
{

sounds[] = {};
};

// === Identities ==>
class CfgIdentities
{

class MrMurray
{

name = "MrMurray";
face = "Face33";
glasses = "none";
speaker = "Dan";
pitch = 1.00;

};

class Memphisbelle
{

name = "Memphisbelle";
face = "Face10";
glasses = "none";
speaker = "Howard";
pitch = 1.00;

};

class Dan
{

name = "Dan";
face = "Face22";
glasses = "none";
speaker = "Russell";
pitch = 1.00;

};

};

// End Of File

The Stringtable.csv is needed by the game to display different text variables which were
defined by the user. It enables the player to define one or several languages in the
mission. This file always should be used by the text editor but Windows always tries to
use Excel as default program.

If one wants to edit the Stringtable.csv, the user has to take care for several things. The
head needs to be defined first. The head also contains the used languages. It’s very
important to make sure that the different languages are separated by commas
individually.

LANGUAGE,English,German,Czech,Notes

The single languages will be separated by commas and marked with " " in every line
individually. You can see an example below:

STR_Titel,"Night Patrol", "Nacht Patrouille", "...", MissionName

One can see a very good example here. The address at the beginning is defined with
STR_Title, the languages are following, and at the end of the line is a description which
will explain what the current line represents. The Syntax “STR_" is the very first part one
has to write. The word Title behind is only a variable which can be freely defined by the
user. You can see an example here:

STR_Mission_1,"Hold Position!", "Position halten!", "…", MissionText1

If one wants to make the text displayed at the beginning of the mission the following
Syntax is needed:

onLoadMission=$STR_Titel;

The Syntax STR_Title can be used as an individual address, which has to be entered if
one wants to implement text into the mission. That text would then be displayed in the
selected and predefined language. The sign @ in front of the Syntax STR_ is used in the
editor only while editing a trigger or waypoint, but in the config or in the description.ext,
the sign $ has to be used.

Calling text out of the editor: @STR_Titel
Out of the description or the config: $STR_Titel

Below, one can see an example of a waypoint displayed with text. This text has previously
been defined in the stringtable:

STR_Mission_1,"Hold Position!", "Position halten!", "…",MissionText1

49

C
h

ap
ter 2

2.4 - The Stringtable.csv

The following syntax has been written in the description box of the waypoint:

@STR_ Mission_1

As one can see the text will be displayed in the game:

It’s also possible to create a line-change in the text. This gives a better look to the text. To
make it, just enter \n

STR_Mission_1,"Hold Position\nand wait for orders!","","…",Missiontext1

In the picture below one can see an example:

In the example below, one can see a fragment of a stringtable out of an original Armed
Assault mission. As one can see, there’s only one language defined.

50

LANGUAGE,English,Notes

STR_M11_Name,"Night Patrol",Mission Name
STR_M11_OnLoad,"You're on duty tonight",Onload
STR_M12_OnLoad,"Don´tsleep and keep your eyes open!",Onload

COMMENT, -------------- Main Mission -------------

STRCAMP_OBJSTART,Guard the military installation,
STRM_07an01,"Southern sector, Sahrani",prebriefing
STRM_07an02,"NATO base in La Riviere, Sahrani",prebriefing
STRM_07an03,"Near Paraiso - One hour later, Sahrani",prebriefing

The Init.sqs is a simple text-file in the “Missions” folder which can be regarded as the init
box of the player character. The game runs this file automatically when the mission starts.
The Init.sqs enables a better overview for the player because all entries are more clear
now. If all of the syntax is written in the initialization box in the unit menu, the player
would lose track of information. What should be written in this script? The user can enter
everything that he or she wants to run when the mission begins.

As one can see in the example below, the GPS-System, game-acceleration, and the hidden
mission targets 1-3 are predefined. The Teleporter.sqs, which is needed while editing, will
run at the beginning of the mission as well. It shall make editing easier for the user. It's
quite necessary to deactivate or remove the Teleporter.sqs later.

Of course it's possible to define a lot of more things than shown in the script above. For
example, the behavior of different units, the arming of units, variables, deleting the unit
status, loading several functions and so on. The shown Init.sqs should serve as an example
only. All written scripts needs to be defined by the user himself. The mission targets need
to be predefined and named as well.

Everything is written very clearly here as one can see. To keep the overview, ArmA will
ignore everything that has been defined behind a semicolon.

51

;titlecut
titleCut [" ", "BLACK IN"]; titleFadeOut 4

;pre-load a funktion
SearchLight = compile preprocessFile "Searchlight.sqf";

;Identity
Player setIdentity "Mr-Murray";

;Hide mission tasks
"MZiel1" ObjStatus "Hidden";
"MZiel2" ObjStatus "Hidden";
"MZiel3" ObjStatus "Hidden";

;GPS-System
[] exec "marker.sqs";

;Choke game speed-up
[] exec "time.sqs";

;Edit script
;Important! It´s only for the time of edit your mission. Later you have to delete it!!!
;Teleport
[] exec "teleport.sqs";
;End

C
h

ap
ter 2

2.5 - The Init.sqs

A script is just a text-file in the missions folder which needs to be defined by the user if he
wants to execute special things in the mission. This section doesn’t explain the scripting,
it only explains the file and how it gets activated. For more information, see Chapter 9.

Every single script which is used in ArmA has the same file-type as Operation Flashpoint,
the xxxx.sqs. To create a script the user only has to create a text-file which just needs to
be renamed. Windows will recognize it as unknown file-type, but that is OK. If the user
wants to edit the script file, he only needs to open it with Notepad (text file editor).

You will learn more about scripts in the next Chapter and you also will see some examples
which will explain the most important things.

The Init.sqs is actually a script, which will be executed by the game automatically at the
beginning of the mission. There is no further syntax needed to run the Init.sqs. This is one
of the most important advantages of the Init.sqs. The Mission.sqs and the Description.ext
are scripts as well. Only the file-type and the function are different from the SQS-Script.

To execute a script out of another script with a trigger or waypoint, the following syntax
is needed:

[] exec "scripts\myscript.sqs"

or

this exec "scripts\myscript.sqs"

After the script has been executed the game run through the scripts orders individually.
The script will end if the word exit has been defined at the end of the script.

One can compare a function with a script. In both cases orders were defined, but there are
small but fine differences. One can compare this with cars like a racing and an old car. But
when one takes a deeper look into the details then one can certify that the racing car is
more modern than the old one.

There is one large difference between the two. The SQS-File has to be read out by the
game every time it is executed , while the SQF-File will be saved in the cache only one time
when the mission begins. Operation Flashpoint used mostly SQS-Files, but it's
recommended to use SQF-Files within ArmA.

Functions need to be used according to their type of the utilization. They should be a
good solution for everyone if they are written clearly and concise. The most important

2.6 - The Script

2.7 - The Function

52

thing is that functions should be reusable in other missions without the need to edit them
individually.

This should give the user the possibility to define a function only one time, e.g. calculating
a special vector, or it could be a solution in a very different problem and make editing
much easier for the user. Furthermore, it's better to define several small scripts than only
one long script. The performance is not the important thing. It’s more important to keep
the re-usability of the function.

The name is variable. The user can name it as he wants, but it's quite important to make
sure that the image file is named the same as it is used in the Overview.html. You can get
more information by reading the subtitle The Overview which is located in Chapter 2.12.

ArmA also supports the JPG-Format as Operation Flashpoint does. So it’s possible to
implement pictures with this format (e.g. Flags). It’s necessary to make sure that one is
using the correct image size. ArmA only accept image sizes that are squared, (preferably
powers of 4). There’re exceptions only in a few sections (e.g. the briefing and/or the
overview). Two-potency are values such as: 2, 4,8,16,32,64,128,256,... a.s.o. these formats
are shown as examples below:

64x64 128x128 128x64 256x256

To view and edit .paa and .pac files, a special tool is needed which can be found on the
ArmA fan-sites or www.mr-murray.de.vu.

C
h

ap
ter 2

2.8 - The Paa-Format

53

The Paa-Format is just an image file-type like the more
known JPG-File type. ArmA mostly uses the formats .paa
and/or .pac. Every single texture which is visible on the
objects in the game is of course, a texture file.

One can see a graphic named Title.paa which is placed in
the subtitle "the missions folder" in this chapter. This
graphic is meant for the overview only and is defined in the
Overview.html. One could see it now if the player would
select the mission out of single-player missions.

The PBO-File is a special file-type for all OFP/ArmA add-ons. This file contains all folders,
scripts, and images etc. which have been previously collected in the “Addon” folder or
“Mission” folder. One can compare PBO-Files with Zip- or Rar-Files, without decreasing the
file size.

If the player is saving his mission not as user defined mission but as SP or MP-Mission,
the game converts all these files to PBO-Files automatically. While the SP-Missions are
located in the directory “ArmA/Missions”, the MP-Missions are located in
“ArmA/MPMissions”.

Not only missions are saved as .pbo files, all add-ons which can be found in ArmA/OFP are
PBO-Files as well. One can read these files with special tools. The user has the ability to
open existing PBO´s to learn how the creator has built an add-on for example. But to learn
more about unzipping pbo´s, there's a lot more information available on ArmA fan sites
where you also can get the necessary tools

Most of the sound files which are used in OFP/ArmA are Wss- or Ogg-Files. But it's also
possible to use wave files. The user only has to make sure that these files are not too large,
because maybe one day he wants to offer his missions as a download.

The Wss- or the Ogg-Files are exactly the right ones because these files have a minimum
file size to their sound length. This gives the possibility to the user to use several sound
files without receiving a mission which has too high of a file size. You will find a more
accurate explanation about implementing sound files in Chapter 5.52.

Sound files without music should be converted as mono files with a frequency of 44.100
kHz only. It’s important to convert the soundtracks as mono to use the distance effects.
If the user wants to add sounds to some objects, he can do so by using the syntax:

Name say "Soundname"

It would be audible on the whole map, and that would be quite unrealistic. So notice,
stereo sounds always become global.

There some helpful tools available to convert the files from one format into the other. You
only have to check the community sites to get such a tool or use the official BIS-Tools.

54

2.9 - The PBO

2.10 - The Sound Files

C
h

ap
ter 2

The Lip-Files are needed to move the lips of the character. Every single sound file which
is made for a language edition can be equipped with a lip file to move the lips of the
character while he’s talking.

There are only 3 values needed. The Frame rate of each single motion picture needs to be
fixed with the value 0.040 first. This value can be seen as time distance of every single
move. Each move of the lips now takes 0.040 seconds.

The degrees of opening needs to be set next. There are 4 different values possible from
0 to 3. The value 0 means closed while the value 3 means wide open.

Shown on the picture below is an example of a lip file for only 1 second. If one divides 1
second with the value 0.040, one will get the value 25. But only 20 lines are shown, and
that’s because the user has the possibility to define the lip file in that way as well.

For example beginning from the time 0.560, If one sets the Lip value 1 and makes a break
until time 0.720 and sets the value up to 2 then, so we have a break of 4 frames.

This example displays only one second of lip movement, so one can figure out how long
a script would be if one wants to define 10 or 15 seconds.

But there are several tools available which can define those scripts automatically. I will
give some links/sources at the end of this guide or check the community sites to get such
a tool.

55

frame = 0.040
0.000, 0
0.040, 1
0.080, 2
0.120, 3
0.160, 2
0.200, 1
0.240, 0
0.280, 1
0.320, 2
0.360, 1

additional -->

0.400, 0
0.440, 1
0.480, 3
0.520, 0
0.560, 1

4 Frame-Pauses
0.720, 2

2 Frame-Pauses
0.800, 1
0.840, 2
0.920, 1
1.000, 2

2.11 - The LIP-Files

The overview is a special feature which is shown in single-player missions only. One can
see it always as a short description of the mission. The overview and the picture which is
shown in the overview, both have to be defined in the Overview.html. One can see an
example on the picture below

The mission selection is located at the right side. The description and the image are seen
on the left side.

It’s quite necessary to have some experience with html, but because you are using this
guide such experiences are not really needed. If you really don’t have any idea how to
create an Overview.html just open an existing one and see how it was created. Just copy
the text, make the changes you want to make and add the image.

But if one wants to create his own, he just has to open the text editor and rename and save
it as Overview.html into his missions folder. You can use the example below which has
been copied from an original ArmA mission.

56

<html>
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=windows-1250">
<meta name="GENERATOR" content="VB">
<title>Overview</title>
</head>
<body bgcolor="#FFFFFF">

<!--Night watch-->

<p align="center"></p>

<p>
<! ---Mission info>
One more boring night watch. But it´s a warm and quiet night...
<! ---End of Mission info>
</p></body>
</html>

2.12 - The Overview

C
h

ap
ter 2

The briefing is a quite necessary feature as everyone already knows. To get the briefing to
be displayed on the map, there’s a Briefing.html needed which is located in the missions
folder. The Html-code is much more complex than the one of the overview. It also contains
much more information of the mission and the additional mission targets.

One can see the mission's description and the targets in the example below. The first
mission objective is already done and has been checked with a green hook. The other
objectives are still incomplete and so they remain unchecked. You can get more
information in Chapter 4.5 - The Mission Targets. First you will learn here how to create
a Briefing.html. Later you will understand the briefing much more

The easiest way to create a briefing is to copy an existing one from another mission. One
can edit the briefing to his own needs for his mission. Another easy way to create a
briefing is to get one of the briefing tools which are located on several Armed-Assault fan
sites, this would save the user much performance.

If one wants to open and edit an already existing briefing, the HTML-file only needs to be
opened with Notepad.

But I will try to explain to you the way how to create a briefing by yourself. As you can see,
there are the sections - plan and notes - located in the briefing. Both sections are actually
2 different pages which have been defined in only one file.

You will need the text editor again as you did while creating the “overview.html”. Open the
Notepad (text file editor) and write your briefing. Rename the text-file to "Briefing" and
save the file as Briefing.html into your missions folder.

57

2.13 - The Briefing

There are several briefing files which are all defined in several languages individually as
one can see in Chapter 2.1 - The Missions Folder located in this chapter. The default
Briefing.html will be displayed in English only, if its written in English. It's up to the user
to decide which language he uses. If the user wants to define the briefing in several
languages he has to keep to some rules and rename each briefing in the correct way.

Briefing.German.html
Overview.German.html
Briefing.France.html
Overview.France.html

The English briefing and overview would be named as follows:

Briefing.html
Overview.html

On the following pages is an example of a briefing.html which coincides with the picture
above. Only the notes named in the previous picture have been added. One might be
able to create his own briefing if he has a little time and patience. If you also use your
creativity and practice a while,you can define a well polished briefing. Beginners can get
some Html-Information here.

On the example below one can see a briefing source text:

58

<html>
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=windows-1250">
<meta name="GENERATOR" content="vb">
<title>Briefing</title>
</head>
<body bgcolor="#FFFFFF">
<h2>

</h2>
<! --- The notes – Here you can write down your notes.>
<h6>
Damn that’s my first shooting lesson.

</h6>
<! --- End of Notes>
<hr>
<! --- The Mission plan – Here you can put down your mission description.>
<p>
Successfully finish weapon qualification.

59

Expert Marksman rifle qualification required to unlock sniper course in line 6.
</p>
<hr>
<! --- The Mission Tasks– Here you have to define the mission tasks.>
<p> Listen to your drill instructor until he lets you go.
</p><hr>
<p> Qualify with rifle in line 1.
</p><hr>
<p> Qualify with automatic weapon in line 2.
</p><hr>
<p> Qualify with granade launcher in line 3.
</p><hr>
<p> Familiarize with hand granades in line 4.
</p><hr>
<p> Qualify with M9 pistol in line 5.
</p><hr>

<! --- End of mission plan>
<! --- Debriefing – Write down your debriefing>
<hr>

<h2><p>Qualified</p></h2>

<p>

Now I'm a qualified infantryman.
</p>

<hr>

<h2><p>Title</p></h2>

<p></p>

<hr>

<h2><p>Title</p></h2>

<p></p>

<hr>

<h2><p>Title</p></h2>

<p></p>

<hr>

<h2><p>Title</p></h2>

<p></p>

<hr>

<h2><p>Give UP</p></h2>

<p>
I gave it up. The infantry training is boring.
</p>

<! --- END debriefing --->
</body>
</html>

C
h

ap
ter 2

The Html-Document starts with the both tags <html> and <head>. The following tags
are not as important right now. The background color has to be defined by the tag <body
bgcolor="#FFFFFF"> although it's already predefined in Armed Assault. The tag
 is
much more important, it defines a line-break. <hr> defines an horizon line which is
actually non visible in the briefing. Paragraphs have to be defined by using the <p> tag.
And last but not least the <a> tag, which is needed to define links inside an Html-
Document. He who wants to define one of those nice links in the briefing which make
the crosshair move to its predefined position can get an example below.

A short example:
If one has set a marker called Target on the map, so this one only needs to be linked in
the briefing. The sentense in the briefing is called: Hit and run the target. The word
Target has to be linked with its respective position on the map. The order in the Html-
Document looks like this

Hit and run the Target

The marker called target is defined in the command between <a> and . If the player
clicks on the word “Target” the cross hair would move to the position on the map, as
shown in the image below. Commands which are defined with a backslash will end each
command.

60

Chapter 3
– Weapons – Vehicles – Units – Objects –

Now that you have become more familiar with the user interface and the file-types
covered in the first two chapters, we now will go to the more specific sections. Also, you
should know how to place units on the map and connect them to each other with
waypoints. You will now learn all about weapons, vehicles, units and objects in this
Chapter.

3.1 The Hand Weapons And Static Weapons 62
3.2 The Weapons Class Name List 66
3.3 Arm And Equip Units 68
3.4 The Weapon And Ammo Crates 69
3.5 Load And Unload Vehicles 69
3.6 Weapon Selection In The Briefing 70
3.7 The Vehicle Classes 71
3.8 The Unit Classes 74
3.9 Getting Weapon And Magazine Types Displayed 76
3.10 Getting Fired Type 76

61

Laggingape (Till Breuer)

C
h

ap
ter 3

Here you have a well defined overview of the hand and static weapons, each with a
description of the weapon, its magazine, and additional information.

WEST / RESISTANCE – Light Hand Guns

Weapon: M16A2 M16A2GL M4GL - M4A1GL
Magazine: 20Rnd_556x45_Stanag 20Rnd_556x45_Stanag 20Rnd_556x45_Stanag

30Rnd_556x45_Stanag 30Rnd_556x45_Stanag 30Rnd_556x45_Stanag
Grenade: 1Rnd_HE_M203 1Rnd_HE_M203
Flares: FlareWhite_M203 FlareWhite_M203

FlareGreen_M203 FlareGreen_M203
FlareRed_M203 FlareRed_M203
FlareYellow_M203 FlareYellow_M203

Weapon: M4 M4A1SD M4AIM
Magazine: 20Rnd_556x45_Stanag 20Rnd_556x45_Stanag 20Rnd_556x45_Stanag

30Rnd_556x45_Stanag 30Rnd_556x45_Stanag 30Rnd_556x45_Stanag
30Rnd_556x45_StanagSD 30Rnd_556x45_StanagSD 30Rnd_556x45_StanagSD

Weapon: M16A4 - M4A1 M16A4_GL M16A4_ACG_GL
Magazine: 20Rnd_556x45_Stanag 20Rnd_556x45_Stanag 20Rnd_556x45_Stanag

30Rnd_556x45_Stanag 30Rnd_556x45_Stanag 30Rnd_556x45_Stanag
Grenade: 1Rnd_HE_M203 1Rnd_HE_M203
Flares: FlareWhite_M203 FlareWhite_M203

FlareGreen_M203 FlareGreen_M203
FlareRed_M203 FlareRed_M203
FlareYellow_M203 FlareYellow_M203

Weapon: M16A4_ACG MP5A5 MP5SD
Magazine: 20Rnd_556x45_Stanag 30Rnd_9x19_MP5 30Rnd_9x19_MP5

30Rnd_556x45_Stanag 30Rnd_9x19_MP5SD 30Rnd_9x19_MP5SD

62

3.1 - The Hand Weapons And Static Weapons

Weapon: M4SPR M249 M240
Magazine: 20Rnd_556x45_Stanag 20Rnd_556x45_Stanag 100Rnd_762x51_M240

30Rnd_556x45_Stanag 30Rnd_556x45_Stanag
30Rnd_556x45_StanagSD 30Rnd_556x45_StanagSD

200Rnd_556x45_M249

Weapon: G36a G36C G36K
Magazine: 30Rnd_556x45_ G36 30Rnd_556x45_G36 30Rnd_556x45_ G36

Weapon: M24 M107
Magazine: 5Rnd_762x51_M24 10Rnd_127x99_M107

Weapon: M9 M9SD
Magazine: 15Rnd_9x19_M9 15Rnd_9x19_M9

15Rnd_9x19_M9SD 15Rnd_9x19_M9SD

WEST / RESISTANCE – Heavy Hand Guns

Weapon: Stinger M136 Javelin
Magazine: Stinger M136 Javelin

WEST / RESISTANCE – Static Guns

Weapon: M119 M2StaticMG SearchLight
Magazine: 30Rnd_105mmHE_M119 100Rnd_127x99_M2

63

C
h

ap
ter 3

EAST – Light Guns

Weapon: AK74 AK74GL AKS74U
Magazine: 30Rnd_545x39_AK 30Rnd_545x39_AK 30Rnd_545x39_AK
Grenade: 1Rnd_HE_GP25
Flares: FlareWhite_GP25

FlareGreen_GP25
FlareRed_GP25
FlareYellow_GP25

Weapon: AKS74UN PK SVD
Magazine: 30Rnd_545x39_AK 100Rnd_762x54_PK 10Rnd_762x54_SVD

30Rnd_545x39_AKSD

Weapon: AKS74PSO KSVK
Magazine: 30Rnd_545x39_AK 5Rnd_127x108_KSVK

Weapon: Makarov MakarovSD
Magazine: 8Rnd_9x18_Makarov 8Rnd_9x18_Makarov

8Rnd_9x18_MakarovSD 8Rnd_9x18_MakarovSD

EAST – Heavy Guns

Weapon: 6G30 RPG7V Strela
Magazine: 6Rnd_HE_6G30 PG7V Strela

64

EAST – Static Guns

Waffe: D30 DSHKM AGS
Magazin: 30Rnd_122mmHE_D30 50Rnd_127x107_DSHKM 29Rnd_30mm_AGS30

Equipment (general)

Weapon: Handgrenade HandGrenadeTimed Pipebomb
Magazine: Handgrenade HandGrenadeTimed Pipebomb

Weapon: Mine MineE Binocular
Magazine: Mine MineE

Weapon: NVGoggles SmokeShell
Magazine: SmokeShell

SmokeShellRed
SmokeShellGreen

65

C
h

ap
ter 3

One can take a look at all used weapons and their magazines on the list below. A small
description was added to every entry as well. Of course it makes no sense to give out
magazines defined with an “SD” for suppressed weapons to a weapon without a suppressor.

West / Resistance

66

Weapon Class Description Ammunition
M16A2

M16A4

M16A4_ACG

M4

M4A1

M4A1SD

M4AIM

M4SPR

M16A2

M16A4

M16A4 - Scope

M 4 - Standard

M 4 A1 - Standard

M 4 - Silencer

M4 - Aimpoint

M 4 - Scope

Magazine: 20Rnd_556x45_Stanag
30Rnd_556x45_Stanag
30Rnd_556x45_StanagSD

M16A2GL

M16A4_GL

M16A4_ACG_GL

M4GL

M4A1GL

Guns with
Grenade Launcher

Magazine: 20Rnd_556x45_Stanag
30Rnd_556x45_Stanag
30Rnd_556x45_StanagSD

Grenades: 1Rnd_HE_M203

Flares: FlareWhite_M203
FlareGreen_M203
FlareRed_M203
FlareYellow_M203

M249 M249 SAW Magazine: 20Rnd_556x45_Stanag
30Rnd_556x45_Stanag
200Rnd_556x45_M249
30Rnd_556x45_StanagSD

M240 M240 Magazine: 100Rnd_762x51_M240
G36a

G36C

G36K

G 36 – Standard

G 36 - Commando

G 36 – Commando II

Magazine: 30Rnd_556x45_G36

M24 Sniper Rifle Magazine: 5Rnd_762x51_M24
M107 Heavy Sniper Rifle Magazine: 10Rnd_127x99_M107
MP5A5

MP5SD

MP5 - StandardMP5 -

Silencer

Magazine: 30Rnd_9x19_MP5
30Rnd_9x19_MP5SD

M9
M9SD

Pistol
Pistol - Silencer

Magazine: 15Rnd_9x19_M9
15Rnd_9x19_M9SD

M136 AT Rocket Launcher Magazine: M136

Javelin AT Rocket Launcher Magazine: Javelin
Stinger AA Rocket Launcher Magazine: Stinger

3.2 -The Weapons Class Name List

East

Equipment

67

Weapon Class Description Ammunition
AK74 AK 74 Magazine: 30Rnd_545x39_AK
AK74GL AK 74

with Grenade Launcher
Magazine: 30Rnd_545x39_AK

Grenade: 1Rnd_HE_GP25

Flares: FlareWhite_GP25
FlareGreen_GP25
FlareRed_GP25
FlareYellow_GP25

AKS74U
AKS74UN

AKS 74 U - Standard
AKS74UN - Silencer

Magazine 30Rnd_545x39_AK
30Rnd_545x39_AKSD

AKS74PSO AKS74 - Scope Magazine: 30Rnd_545x39_AK AK74PSO
PK MG Magazine: 100Rnd_762x54_PK
KSVK Heavy Sniper Rifle Magazine: 5Rnd_127x108_KSVK

SVD Sniper Rifle Magazine: 10Rnd_762x54_SVD

Makarov
MakarovSD

Pistol
Pistol - Silencer

Magazine: 8Rnd_9x18_Makarov
8Rnd _9x18_MakarovSD

6G30 Grenade Launcher Magazine: 6Rnd_HE_6G30
RPG7V AT Rocket Launcher Magazine: RPG7V

Strela AA Rocket Launcher Magazine: Strela

Weapon Class Description Ammunition
Handgrenade Handgrenade Handgrenade
HandGrenadeTimed Handgrenade (time delay) HandGrenadeTimed
Grenade Grenade Grenade
TimeBomb Time Bomb TimeBomb
PipeBomb Explosive Charge PipeBomb
SmokeShell White Smokeshell SmokeShell
SmokeShellRed Red Smokeshell SmokeShellRed
SmokeShellGreen Green Smokeshell SmokeShellGreen
Mine Tank Mine Mine
MineE AP Mine MineE
Binocular Binoculars Binocular
NVgoggles Night Vision Device NVgoggles
LaserDesignator Laser Designator LaserBatteries
CarHorn Car Horn CarHorn
SportCarHorn Sport Car Horn SportCarHorn
TruckHorn Truck Horn TruckHorn
BikeHorn Bicycle Bell BikeHorn

C
h

ap
ter 3

All units which are placeable in Armed Assault can be armed or unarmed. Its quite well
to know that every single unit can carry only one gun (such as a rifle) and only one heavy
weapon (such as a LAW or an anti-aircraft weapon). It is possible to add a weapon after
the default weapon has been removed first. All weapons can be removed individually
and/or completely.

A single weapon can be removed by using following syntax:

this removeWeapon "M4" or Name removeWeapon "M4"

The magazines and hand grenades and so on are still in use by the character. If the user
adds a weapon to the character which needs the same magazine type, this weapon would
be loaded at the beginning. But in the following case it will not appear if the user is using
the following syntax:

removeAllWeapons Name

All weapons and all magazines will be removed from the character by using this syntax.
If the user wants to rearm that character completely, he has to do it in a special way,
because the weapon wouldn't be loaded at the beginning of the mission. The magazines
have to be defined first and the weapons have to be defined last to make sure that the
weapon will be loaded at the beginning of the mission.

After the weapon (for example the M4) has been removed while using the syntax above,
the user can add a new one by using the following syntax:

this addWeapon "M4A1SD" or Name addWeapon "M4A1SD";

That entry can be done in the init. line of the unit or in other places like scripts, triggers
or waypoints. If the user wants to remove a magazine only, he only has to use this syntax:

this removeMagazine "30Rnd_556x45_Stanag"

and to rearm with a new magazine just use this syntax:

this addMagazine "30Rnd_556x45_StanagSD"

These orders are not meant for the weapons only, they can be used for additional
equipment as well. The default unit is not equipped with binoculars or night vision
goggles, but those two things are quite useful while traversing the huge landscapes of
Sahrani, or at night. To add these weapons to the character the user has to enter following
syntax in the init. line of the recipient unit:

To add the binoculars: this addWeapon "Binocular";

And for the night vision goggles: this addWeapon "NVGoggles";

68

3.3 - Arm And Equip Units

All weapons and ammo crates let soldiers equip themselves individually. It makes no
difference as to whether one adds weapons and magazines in different ammo crates or
only in a single one. To define items for a ammo boxes it's necessary to clear it first. To do
this use following syntax:

clearWeaponCargo this or clearWeaponCargo Name
clearMagazineCargo this or clearMagazineCargo Name

Those entries have to be made in the initialization line of the respective ammo boxes. Its
also possible to define them in external areas like scripts and triggers a.s.o. After the
ammo box has been cleared, the user can add the weapons and magazines as he’d like to
use in the mission. You can rename the ammo box or just use the syntax "this".

An ammo box will be equipped with 2 suppressed M4A1's, 10 compatible magazines and
6 hand grenades:

this addWeaponCargo ["M4A1SD",2];
this addMagazineCargo ["30Rnd_556x45_StanagSD",10];
this addMagazineCargo ["Handgrenade",6];

Note! Even barrels can be equipped with weapons and ammunition. It’s exactly the same
way as equipping ammo boxes, the only difference is that the barrels don’t have to be
cleared beforehand.

Many vehicles in ArmA are already equipped with weapons, ammunition and similar
things. One always has the possibility to rearm himself there. It’s also possible to equip
vehicles with weapons and ammunition. The same procedure which is done while
equipping ammo boxes is done here. To unload vehicles use this syntax:

clearWeaponCargo this
clearMagazineCargo this

To load a vehicle again use this one:

this addWeaponCargo ["M4A1SD",2];
this addMagazineCargo ["30Rnd_556x45_StanagSD",10];

In that example, 2 suppressed M4A1's and 10 compatible magazines were loaded into the
vehicle.

69

C
h

ap
ter 3

3.4 - The Weapons And Ammo Crates

3.5 - Load And Unload Vehicles

If the player is joining the game as group leader, he has the possibility to edit the weapons
and equipment of himself and/or his group members. The only prerequisite is that these
features are defined in the description first. Just refer to Chapter 2.3 - The Description.ext.

To make sure that it works, the user needs to define the weapon with their similar
magazines. One can find 6 suppressed M4A1's with their additional magazines, 2 M136
Rocket launcher's with 6 rockets and 20 hand grenades, in the following example:

The kind of weapons

The number of weapons

The kind of weapons

The number of weapons

The kind of magazines

The number of magazines

The kind of magazines

The number of magazines

The kind of magazines

The number of magazines

If one wants to add additional weapons he only has to add each class of the weapon and
the related magazine to the similar section in the Description.ext.

70

// The part class Weapons begins right here

class Weapons
{

class M4A1SD
{
count = 6;
};
class M136
{
count = 2;
};

};
// The part Class Weapons ends right here

// The part class Magazines begins right here

class Magazines
{

class 30Rnd_556x45_StanagSD
{
count = 20;
};
class M136
{
count = 6;
};
class HandGrenade
{
count = 20;
};

};
// The part Class Magazines ends right here

3.6 - Weapon Selection In The Briefing

One can see a list of the vehicles below. This list contains each single class with their editor
names, a description, and the class name which is needed to place the vehicle on the
map by using a syntax.

WEST

71

Vehicle Description Class Name
Land

M1Abrams Tank M1Abrams
M113 Armoured Personnel Tank M113
M113Ambul Ambulance Tank M113Ambul
Vulcan Anti Aircraft Tank Vulcan
Stryker ICV M2 Light Tank with M2-Maschine Gun Stryker_ICV_M2
Stryker ICV MK19 Light Tank with Grenade Launcher Stryker_ICV_MK19
Stryker TOW Light Tank with AT-Launcher Stryker_TOW
HMMWV HMMWV HMMWV
HMMWV M2 HMMWV with M2-Maschine Gun HMMWV50
HMMWV TOW HMMWV with AT-Launcher HMMWVTOW
HMMWV MK 19 HMMWV with Grenade Launcher HMMWVMK
Truck 5 t Truck 5 Tons Truck5t
Truck 5 t Open Truck 5 Tons - open Truck5tOpen
Truck 5 t MG Truck 5 Tons with M2-Maschine Gun Truck5tMG
Truck 5 t Repair Truck 5 Tons - Repair Truck Truck5tRepair
Truck 5 t Reammo Truck 5 Tons - Reammo Truck Truck5tReammo
Truck 5 t Refuel Truck 5 Tons - Refuel Truck Truck5tRefuel
Motorcycle Motorcycle M1030

Air
AH 1 Z Cobra - Helicopter Gunship AH1W
AH 6 Little Bird Helicopter armed AH6
AV 8 B Harrier with Rockets AV8B2
AV 8 B (GBU) Harrier with Bombs AV8B
A10 A10 with Rockets and GAU12-Cannon A10
MH 6 Little Bird - Helicopter unarmed MH6
UH 60 Blackhawk - Helicopter with MG UH60MG
UH 60 (FFAR) Blackhawk - Helicopter with Rocket Launcher UH60
Camel Biplane Camel
Parachute Parachute ParachuteWest

Water
CRRC Inflatable Dinghy Zodiac
RHIB Patrol Boat with Maschine Gun RHIB
RHIB 2 Turret Patrol Boat with Maschine Gun, Grenade Launcher RHIB2Turret

3.7 - The Vehicle Classes

C
h

ap
ter 3

EAST

RESISTANCE

72

Vehicle Description Class Name
Land

T72 Tank T72
BMP2 Armoured Personnel Tank BMP2
BMP2Ambul Ambulance Tank BMP2Ambul
ZSU Anti Aircraft Tank ZSU
BRDM2 Light Tank BRDM2
BRDM2_ATGM Light Tank with AT-Launcher BRDM2_ATGM
UAZ Jeep UAZ
UAZMG Jeep with Maschine Gun UAZMG
Ural Truck Ural
UralOpen Truck – open UralOpen
UralRepair Truck – Repair Truck UralRepair
UralReammo Truck – Reammo Truck UralReammo
UralRefuel Truck – ReFuel Truck UralRefuel
Motorcycle Motorcycle TT650G

Air
SU 34 SU 34 with Rockets, FFAR, Heavy Cannon SU34
SU 34B SU 34 with Rockets and Heavy Cannon SU34B
Mi 17 Helicopter with Maschine Gun Mi17_MG
Mi 17 Helicopter with Rocket Launcher Mi17
KA-50 Helicopter Gunship KA50
Camel E Biplane Camel2
Parachute Parachute ParachuteEast

Water
PBX Boat Inflatable Dinghy PBX

Vehicle Description Class Name
Land

M113 RACS Armoured Personnel Tank M113_RACS
Vulkan RACS Anti Aircraft Tank Vulkan_RACS
4x4 Jeep (closed) Landrover
4x4 MG Jeep with Maschinen Gun M2 LandroverMG
4x4 Open Jeep (open) Landrover_Closed

Air
AH6 RACS Little Bird Helicopter armed AH6_RACS
MH6 RACS Little Bird MH6_RACS
Parachute Parachute ParachuteG

Water
CRRC Inflatable Dinghy Zodiac2

CIVILIAN

73

Vehicle Description Class Name
Land

Pick-Up Pick-Up blue Datsun1_civil_1_open
Pick-Up 2 Pick-Up rot (closed) Datsun1_civil_2_covered
Pick-Up 3 Pick-Up green Datsun1_civil_3_open
Offroad Off-Road Vehicle grey (open) Hilux1_civil_1_open
Offroad2 Off-Road Vehicle red top Hilux1_civil_3_open
Offroad3 Off-Road Vehicle white (open) Hilux1_civil_2_covered
Sedan Car white Car_sedan
Hatchback Car red Car_hatchback
Skoda Skoda weiß Skoda
Skoda (Blue) Skoda blue SkodaBlue
Skoda (Red) Skoda red SkodaRed
Skoda (Green) Skoda green SkodaGreen
Policecar Police Jeep Landrover_Police
Bus City Bus Bus_city
UralCivil Truck yellow (closed) UralCivil
UralCivil 2 Truck blue (open) UralCivil2
Tractor Tractor Tractor
Motorcycle Motorcycle TT650C

Air
Parachute Parachute ParachuteC

C
h

ap
ter 3

WEST

EAST

74

Unit Description Class Name
AA Specialist Anti Aircraft Soldier with Stinger SoldierWAA
AT Specialist Anti Tank Soldier with M 136 SoldierWAT
Automatic Rifleman Soldier with Maschine Gun M249 SoldierWAR
Camel Pilot Biplane Pilot BISCamelPilot
Crewman Vehicle Crew SoldierWCrew
Engineer Engineer SoldierWMiner
Grenadier Grenadier SoldierWG
Machinegunner Soldier with Maschine Gun M240 SoldierWMG
Medic Corpsman SoldierWMedic
Officer Officer OfficerW
Pilot Pilot SoldierWPilot
Rifleman Soldier with M4AIM SoldierWB
SF Assault Special Forces with M4A1GL SoldierWSaboteurAssault
SF Marksman Special Forces with M4 SPR SoldierWSaboteurMarksman
SF Recon Special Forces with M4 A1 SD SoldierWSaboteurRecon
SF Saboteur Special Forces with M4 A1 SD SoldierWSaboteurPipe
SF Saboteur 2 Special Forces with MP 5 SD SoldierWSaboteurPipe2
Sniper Sniper with M24 SoldierWSniper
Squad Leader Squad Leader with M4 AIM SquadLeaderW
Team Leader Team Leader with M4 AIM TeamLeaderW

Unit Description Class Name
AA Specialist Anti Aircraft Soldier with Strela SoldierEAA
AT Specialist Anti Tank Soldier with RPG 7 V SoldierEAT
Camel Pilot Biplane Pilot BISCamelPilot2
Crewman Vehicle Crew SoldierECrew
Engineer Engineer SoldierEMiner
Especas Speznaz with AKS 74 U SoldierESaboteurPipe
Especas Marksman Speznaz with AKS74PSO SoldierESaboteurMarksman
Especas Saboteur Speznaz with AKS 74 UN SoldierESaboteurBizon
Grenadier Grenadier SoldierEG
Machinegunner Soldier with Maschinen Gun PK SoldierEMG
Medic Corpsman SoldierEMedic
Officer Officer OfficerE
Pilot Pilot SoldierEPilot
Rifleman Soldier SoldierEB
Sniper Sniper with Dragunov (SVD) SoldierESniper
Squad Leader Squad Leader SquadLeaderE
Team Leader Team Leader TeamLeaderE

3.8 - The Unit Classes

RESISTANCE

CIVILIAN

Units which are defined with N/A are not available in the Editor. These units can be
generated by using the CreateVehicle command as explained in Chapter 5.45.

INSECTS

75

C
h

ap
ter 3

Unit Description Class Name
AA Specialist Anti Aircraft Soldier with Stinger SoldierGAA
AT Specialist Anti Tank Soldier with M136 SoldierGAT
Crewman Vehicle Crew SoldierGCrew
Engineer Engineer SoldierGMiner
Grenadier Grenadier SoldierGG
Machinegunner Soldier with Maschinen Gun M240 SoldierGMG
Medic Corpsman (Medic) SoldierGMedic
Officer Officer SoldierG
Pilot Pilot SoldierGPilot
Rifleman Soldier SoldierGB
Royal Commando Royal Commando with MP 5 SD SoldierGCommando
Royal Guard Royal Guard with G36c SoldierGGuard
Royal Marksman Royal Sniper with G36a SoldierGMarksman
Sniper Sniper with M24 SoldierGSniper
Squad Leader Squad Leader SquadLeader
Team Leader Team Leader TeamLeader

Unit Description Class Name
Civilian to Civilian21 Nearer description is not necessary.

Numbered from Civilian to Civilian21.
Civilian

N/A King King
N/A War Reporter FieldReporter
N/A Bodyguard Anchorman
N/A Prime Minister NorthPrimeMinister
N/A Female Reporter MarianQuandt
N/A Female Reporter MarianQuandt02
N/A Female Reporter MarianQuandt03
N/A Female Reporter MarianQuandt04
N/A Zombie Civil_Undead_1
N/A Zombie Civil_Undead_2
N/A Zombie Civil_Undead_3
N/A Zombie Civil_Undead_4

Type Description Class Name
N/A Seagull Seagull
N/A Dragonfly Dragonfly
N/A House Fly HouseFly
N/A Honeybee Honeybee
N/A Mosquito Mosquito
N/A Butterfly Butterfly

By using the following Syntax, one will have the possibility to get the different weapon
and magazine types displayed as an on screen information text. To do this for the weapon
types, just use:

hint format ["%1", weapons this];
hint format ["%1", weapons Name];

and for the magazine types:

hint format ["%1", magazines this];

One also has the possibility to get additional information - such as which unit has fired
with what kind of ammunition - displayed on the screen. The following details will be
displayed:

Name of the unit
The weapon type
The bullet type
The way of firing (single fire/burst)

Once the unit in the game has fired its weapon, this text will appear on the screen:

To do this it's recommended to use an event handler which will be used to define the
syntax in the init. line of a unit as shown in the example below:

this addEventHandler ["Fired", {hint format ["%1", _this]}]

All of this can be used with names for external scripts as well:

Name addEventHandler ["Fired", {hint format ["%1", _this]}]

76

3.9 - Getting Weapon And Magazine Types Displayed

3.10 - Getting Fired Type

Chapter 4
- The Mission -

After you have learned the user interface, the files and the weapons in the first 3 chapters,
we’ll enter a new section now - The mission design. Here you’ll learn how to start a
mission, define the targets, the fulfilment measures assessed, and finally finishing the
mission successfully.

4.1 The Mission Name 97
4.2 The Mission Start 97
4.3 The Mission Accessories 98
4.4 The Mission Appraisal 99
4.5 The Mission Targets 99
4.6 Finishing a Mission 101
4.7 Saving a Mission 103

77

C
h

ap
ter 4

Switcher83 (Matthias Schulz)

If the user creates a new map, he should name the mission in the Intel menu. This is not
quite necessary but useful, because this makes the mission display with its real name.
If one does not do that, the mission would be displayed with its island name. The mission
name will look like this:

The example mission is called Beispielmission. The first one is displayed by its real name
because it has been defined in Intel menu. The second one hasn’t been defined, so you
can see what happens to the mission name in the mission selection menu.

The game offers the possibility to display time of day and a headline in an individual style
while the mission is loading. The text which shall be displayed is up to the user but it
shouldn’t be too long. To make the time of day and the desired text lines display, the
description.ext needs be edited. If this file doesn’t exist in your mission folder, it has to be
created. (You’ll get more information about this in Chapter 2.3 - The Description.ext.)

To predefine the text and the time of day just enter following syntaxes in the head of the
description.ext:

oonnLLooaaddIInnttrroo == MMrr--MMuurrrraayy pprroouuddllyy pprreesseennttss
oonnLLooaaddMMiissssiioonn == CCoonnvvooyy AAttttaacckk

oonnLLooaaddIInnttrrooTTiimmee == ttrruuee respective ffaallssee or 11 resp. 00
oonnLLooaaddMMiissssiioonnTTiimmee == ffaallssee

If one doesn’t want both things to be displayed, the values just have to be set to 0 or false
behind the quotes and the text above the clock will no longer be displayed.

78

4.2 - The Mission Start

4.1 - The Mission Name

It's also possible to define the text in the stringtable.csv, that would look like this:

onLoadIntro = $STR_Missionstart

You can find more information about the stringtable.csv in Chapter 2.4.

The user has the possibility to determine whether certain mission accessories are to be
enabled in the mission or not. To do this, further things need to be defined in the
description.ext as well.

To display each used accessory the number 1 or 0 respective false or true are needed. As
follows the list of the orders:

ShowGPS = 1; - GPS

ShowCompass = 1; - Compass

ShowRadio = 1; - Radio

ShowMap = 1; - Map

ShowNotePad = 1; - Briefing

ShowWatch = 1; - Clock

ShowDebriefing = 1; - Debriefing

79

4.3 - The Mission Accessories

C
h

ap
ter 4

As in most games, the player can receive points for reaching targets. This is possible in
ArmA as well. To enable that option just define the necessary commands in the
description.ext. The number of the receiving points is variable and can be freely defined
by the user. The respective part in the description.ext looks like as follows:

minScore=200 - The least scores
avgScore=3000 - The middle scores
maxScore=6000 - The highest scores

The player will automatically receive points for each enemy unit killed. If one wants the
player to receive extra points for completing a special objective at some point in the
mission, the following syntax is needed:

Player addRating Value

It's also possible to remove points from the player, for example, if the player destroys a
facility which he is actually supposed to protect. To do this use the syntax above and add
a - (minus) in front of the value only.

Player addRating -Value

If one wants to receive a point status when the player has received a certain number of
points, (for example, to end the mission) then one only has to place a trigger on the map
with following conditions: (Axis a/b = 0), and write in the condition line:

rating Player > Value or rating Player >= Value

Select End1 out of the Types. If the player reaches this value, the mission will end and the
briefing will display the results.

The most important things of a mission are the targets. No targets - no mission; so the
targets need to be defined early.

The mission targets can be defined as explained in Chapter 2.13 - The Briefing.html,
and if one likes, it’s also possible to hide them as explained in Chapter 2.5 - The Init.sqs.

Hidden targets have to be defined and configured on the map just as the visible targets
are. Hiding a target means that the target is not visible for the player in the briefing and
on the map, but when the player has accomplished a target, it will appear on the map.

80

4.4 - The Mission Appraisal

4.5 - The Mission Targets

Example mission
The player reads in his orders that he has to "Hit-and-run this village". The second order,
"Destroy the ammunition truck", is still invisible because of the entry in the Init.sqs. If the
village has been cleared of all enemy units, the first objective will be marked with a green
check mark and the second target will become visible.

To do this just set a trigger on the map right over the respective village. Conditions: Axis
(a/b) 300, onActivation (the side which has to protect the village), and not present. The
trigger will execute now when the side which protects the village is no longer alive (not
present).

The necessary commands which are to be executed when the village is free of enemy
units, have to be entered In the onActivation line. “Check target 1” and “make target 2
visible again” are a part of this command. It’s recommended to add a hint to the
command to give some information to the player. So use following syntax:

"1" ObjStatus "Done"; "2" ObjStatus "Visible"; hint "Mission plan updated!"

The user has to set a marker directly over the village on the map and name it "TargetX".
The cross-hair will move to that marker if the player is clicking the link "This village" in the
briefing.

You can also check Chapter 2.13 to get further information about he necessary
commands which are to be used in the Briefing.html.

The necessary entry in the Init.sqs, which is used hide the second mission target, needs
to be defined as "2" ObjStatus "Hidden".

The following are the different commands which are used for each mission status:

Hidden - The mission target will be hidden

Visible - The mission target will be visible again

Active - The mission target is active

Done - The mission target is done

Failed - The mission has been failed.

81

<p>

Capture this village!
</p>
<hr>
<p>
Destroy the ammunition Truck!
</p>
<hr>

C
h

ap
ter 4

When the player has reached all targets then the mission has been finished. There are
several possibilities to end a mission of course. Those endings are up to the story, the
targets, and of course, the mission. Here you can see some examples of how to end a
mission:

Checking the status of a unit within a local view

Checking the status of a unit within a global view

82

One can see several units in the image to the
right. The APC has to be destroyed for the
trigger to be executed. This one has been
connected with a trigger by pressing the 2 key.
The trigger has been defined as follows:

Axis a/b: 50
Type: End #1
Activation: Not present

In local view, the mission will end if the APC is
destroyed or if it leaves the trigger area. What if
the mission should end if the APC is destroyed,
but not when the APC leaves the trigger area?
This is when a global view should be used.

To do this, one has to set a trigger again but this
trigger does not have a bordered area. So we
have different settings compared to the local
view:

Axis a/b: 0
Type: End #1
Condition: ! (alive Tank1)

Our APC has been renamed to Tank1 and the
trigger was set up to the global view with both
Axis a and b set to 0. You can set the trigger
on any place on the map, because it will now
check the whole map to find out if Tank1 is still
alive or not.

4.6 - Ending The Mission

The APC can move on the whole map now and the mission will end only if the APC has
been destroyed. The local view is variable of course and the value which has to be defined
in both Axis boxes is up to the story and what the creator of the mission wants to do.
Global view gives more flexibility to the mission. Every trigger which has been defined
with a local view generates a circle around itself. If the user is using the global view, no
circles will be visible and this gives a better overlook to the user while creating the
mission.

Covered on several units out of the global view
The same guidelines used in the global view, only with additional commands in the
conditions line:

! (alive Tank1) AND ! (alive MG1) AND ! (alive Soldier1)

The AND connects every single condition with each other. The mission will be
accomplished if the targets named Tank1, MG1, and Soldier1 have been destroyed.

The mission is finally accomplished when the trigger area is free of enemy units
One can see several units in the picture below. The objective is to eliminate all enemy
units in that village (trigger area). It doesn’t make any difference whether the enemy units
have been killed/destroyed or have run away, out of the respective trigger area.

Define the trigger as follows:

Axis a/b: 50
Type: End #1
Activation: EAST

Not present

Within ArmA Version 1.05 its possible to adjust a trigger so that it will execute when all
enemy units have been eliminated (resp. are not present) and also one friendly unit is still
left in that trigger area. To do this, just define the side which has to conquer that area.
The definition has to be done in Activation.

83

C
h

ap
ter 4

Variable covered ending of the mission
The variable covered end is not much more difficult to realize , but up to the size more
extensively. The following example shall prove a better explanation. Three different trigger
areas have to be cleared of enemy units. The mission shall end only if all three areas, in this
example three villages, are free of the enemy. So adjust the triggers as follows:

Trigger 1 (Area 1):
Axis a/b: 100
Activation: EAST (not present)
onActivation: Target1=true

Trigger2 (Area 2):
Axis a/b: 150
Activation: EAST (not present)
onActivation: Target2=true

Trigger3 (Area 3):
Axis a/b: 100
Activation: EAST (not present)
onActivation: Target3=true

Trigger 4 (Examiner):
Axis a/b: 0
Type: End #1
Condition: Target1 AND Target2 AND Target3

As one can see, a variable (Target1, Target2, Target3) has been set on true for all three
triggers. The 4th one contains this as a condition to execute. If this trigger is executed, the
mission will be finished. One can also use the timeout function to configure a much more
flexible ending.

This command enables the user to save the current mission status while the mission is
already running. The user has the possibility to place save-points on the map which will
save the mission when the player has reached a specific location or has completed certain
mission objectives. To place such a point on the map just use the following Syntax:

SSaavveeggaammee

If one is selecting “Try again” out of the menu once one has been killed, the player will
restart right at the point where the mission was last saved. If one doesn't want to allow
the saving of the mission, just define the command saving = 0 in the Description.ext.

84

4.7 - Saving a Mission

85

C
h

ap
ter 4

Xsive (Pierre Wirsik)

86

Chapter 5
- Mission Accessories -

This chapter offers lots of additional accessories which can be helpful to the mission. It is
the most complex chapter of the whole book because it contains more than 60
subsections. You may find all the answers to your questions which you’ve ever searched
for, and also lots of other nice information, which might be helpful in your mission.

5.1 Empty or locked vehicle 88
5.2 Driver/Passenger of a vehicle 88
5.3 Unit is not allowed to enter a vehicle 88
5.4 Unit in vehicle? 89
5.5 Vehicle is moving only when unit has been entered 89
5.6 Group already in vehicle when the mission begins 90
5.7 Let a unit get in and get out of a vehicle 90
5.8 Speed of a unit 90
5.9 Make units move or stop 90
5.10 Unit keeps standing 91
5.11 Getting a unit started 91
5.12 Unit is moving to its destination 92
5.13 Running patrol, drive or fly 92
5.14 Escape behaviour of a unit or a group 92
5.15 Moving units, objects, triggers and markers 93
5.16 Placing objects higher or lower 93
5.17 The height of a unit 94
5.18 Accurate helicopter landing 94
5.19 Unit is moving into a building 94
5.20 Unit is leaving / joining group 95
5.21 Assigning a target to a unit 95
5.22 Unit turns to another Unit 96
5.23 Unit is selecting weapon 96
5.24 Inflict damage or heal a unit 96
5.25 Defining a death zone 97
5.26 Checking of an area 97
5.27 Bring about a certain behaviour of a unit in an area 97
5.28 Save or load a unit status 98
5.29 Degree of familiarity of a unit 99
5.30 Friendly enemy 99

87

5.31 Friendly Forces 100
5.32 The Alert 101
5.33 Dead as condition 102
5.34 Distance of two units or objects 102
5.35 Allocate a flag to a flag staff 102
5.36 Burning fire 103
5.37 Add or remove switchable units 103
5.38 Read out and display player side, - name, -type 103
5.39 Oppress player input 103
5.40 Force the map on the screen 103
5.41 Adjusting distance of view 104
5.42 Adjusting the weather 104
5.43 Adjusting date and time of day 105
5.44 Slow motion or time sprint 105
5.45 Generating units and objects 106
5.46 Generate flares, smoke and explosions 108
5.47 Delete units and objects 109
5.48 Adjusting radio menu 109
5.49 Allocate a call-sign to a group 110
5.50 Send a radio message 111
5.51 Creating sound 111
5.52 Using own sounds 112
5.53 Set Identity 115
5.54 Mimics 116
5.55 The Action Order 117
5.56 The animation command 120
5.57 Disable AI units 122
5.58 SetVelocity 122
5.59 The on-screen information (hint) 122
5.60 Units keeps lying or keeps standing 122

C
h

ap
ter 5

To place an empty vehicle on the map just presses the 1-Key and double click on the
map. When the menus appears one has to select “Empty” out of the Side drop-down
menu. Then the unit and vehicle type has to be selected out of the Class sub menu. Then
press the OK button.

If the vehicle needs to be locked or will not to used, just select locked in vehicle status.
If the user wants to make the vehicle usable later, just use following syntax:

Name lock true - The vehicle becomes locked

Name lock false - The vehicle becomes unlocked

With the following orders it’s possible to "beam" a unit to an arbitrary position of a vehicle.
Those syntaxes only need to be defined in the init box of each unit or in external scripts
as well. If those syntaxes are to be defined in the init box of a unit, the variable this can
be used instead of a Name.

Name moveInDriver Fhz1 - Driver of the vehicle

Name moveInCargo Fhz1 - Passenger in a vehicle

Name moveInCommander Fhz1 - Commander of a vehicle

Name moveInGunner Fhz1 - Gunner of the vehicle

Name moveInTurret Fhz1 - Gunner of the vehicle (MG)

Name moveInCargo [Fhz1,3] - Passenger on any cargo position

This syntax has to be used if the user doesn’t want to make a vehicle usable for a certain
unit. To do this just enter the following syntax into the init box of the vehicle.

[[NNaammee11,, NNaammee22,, NNaammee33]] aalllloowwGGeettIInn ffaallssee

Now the units called Name1, Name2 and Name3 are not allowed to enter the vehicle. If
the user wants to make the vehicle usable for these units again, just set the variable on
true again.

[[NNaammee11,, NNaammee22,, NNaammee33]] aalllloowwGGeettIInn ttrruuee

5.1 - Empty or Locked Vehicle

5.2 - Driver / Passenger of a vehicle

5.3 - Unit is not allowed to use a vehicle

88

Sometimes it might be useful to check whether a unit is still inside a vehicle or not. This
can also be used as condition to activate a trigger or a script.

To check whether Name is sitting in a vehicle just use this syntax:

Name in Vehiclename

and define it as condition of a checking trigger. If the unit is getting into the car now, this
trigger will be activated.

To use this one in a script, just define it this way:

? Name in Vehiclename

To test whether a unit is no longer sitting in a vehicle just use this syntax:

not (Name in Vehiclename)

! can be used instead of NOT. The conditions are the same.

Maybe you have a vehicle on the map which already has its waypoints allocated and only
should start to move when a special unit has entered, for example the player. It doesn't
matter which kind of vehicle is used; it works for cars, trucks, ships and also helicopters.

To make it work, just enter following syntax in the condition field of a trigger, or a waypoint:

NNaammee iinn Vehiclename or VVeehhiiccllee NNaammee ==== Vehiclename

Using with groups
That above syntax works for groups as well. The vehicle has to wait until all units of the
group have entered the vehicle. In the following syntax the driver is included, which is
already sitting in the vehicle. One has to calculate the whole group + the driver.
To make it work just enter following syntax in the condition field:

ccoouunntt ccrreeww TTrruucckk11 >>== 1100 or ccoouunntt ccrreeww TTrruucckk11 ==== 1100

C
h

ap
ter 5

5.4 - Unit in vehicle?

5.5 - Vehicle is moving only when unit has entered

89

C
h

ap
ter 5

If the user wants to create a mission where a group is already sitting in a vehicle, one has
to enter the following syntax into the init line of the group leader:

{_x moveInCargo Heli1} forEach Units Group this

or
{_x moveInCargo Heli1} forEach Units Grp1

To do this just place an empty vehicle and a soldier on the map. Then, give a waypoint to
the soldier and place it directly on the vehicle. Then select “Get in“ of the Type menu.
Place another waypoint on the map and select “Get out“. The unit will get into the car,
move to its destination and will get out.

One has the possibility, of course, to do this by using a syntax as well:

unAssignVehicle Fahrzeug1 - Unit is leaving vehicle

{unAssignVehicle _x} forEach units Grp1 - Units are leaving vehicle

The group leader is giving out the command to his group to get out of the vehicle.

The speed of a unit can be defined in a waypoint in the speed menu or you can also use
the following syntax:

Name1 setSpeedMode "Limited" - slow

Name1 setSpeedMode "Normal" - medium

Name1 setSpeedMode "Full" - fast

In this example a unit or group is used which has been assigned several waypoints. It
might be necessary that this unit stops between 2 waypoints. To make this work, just use
this syntax:

Name1 stop true

The named unit will keep its position now until the syntax will be set to false again.

Name1 stop false

5.6 - Group is already in vehicle when the mission begins

5.7 - Let a unit get in and out of a vehicle

5.8 - Speed of a unit

5.9 - Make units move or stop

90

The command dostop this in the init line of a unit, will keep a unit in its position where
it has been placed. This enables one to avoid the units moving back into the formation
close to their leader after the mission has been started.

Using with a team
This option is quite useful if the player is a leader of a group and doesn’t want his group
is following him when he is changing its position. So it is possible to allocate special
positions to the units. The units will keep their positions if the dostop this command has
been defined in the init line of each unit. Furthermore, it's important to set the option
"None" in "Special" for the respective unit..

Using with enemy units
This order is very useful, because it is possible now to spread out enemy units on the
terrain. It is quite important to make sure that the option "none" in "special" has been set.
If the enemy gets attacked now, they will cover on their positions.

In this example we have a group which has to move to it is predefined position if a trigger
or waypoint is executed by the player. Enter the following command in the init line of the
group leader.

this stop true

To make it work you also have to enter

Name stop false

in the init line of the player character. The group will now move to its waypoint. The
command “this” has been used in the syntax above, because this command has been
defined in the init line of the group leader. The second command is using a name, so it's
necessary to allocate a name to the group leader.

C
h

ap
ter 5

5.10 - Unit keeps standing

5.11 - Getting a unit started

91

In ArmA, it’s also possible to send a unit to a special place on the map without supporting
them with waypoints beforehand. There are several possibilities available:

Using objects : Name doMove getPos Name

Using ID´s : Name doMove getPos (Object ID)

Using coordinates: Name doMove [X,Y,Z]

Using markers : Name doMove getMarkerPos "MarkerName"

If one wants to make a whole group move to a special position which has been defined
with one of the possibilities shown above, you first have to define that order without the
do of doMove. That’s needed because the leader might move alone to its predefined
position and his group would follow only when he has reached his destination.

An example for a syntax which is used for objects:

Name move getPos Name or Leader Name move getPos Name

There are further interesting examples shown in the Chapter 6.6 - The Map Click and
Chapter 6.2 - The GPS-System.

If the user wants to make a patrol, running or driving around a base in an unending-loop,
place a unit on the map and give it several waypoints. The last waypoint has to be placed
directly into the area of the first one, then select Cycle out of the Type drop-down menu.

Maybe the user wants to edit a mission where the enemy units are escaping when a
predefined value has been reached. The enemy units will run away and hide somewhere
on Sahrani, but be careful, sometimes they reform and attack again from another
direction.

All values between 0 and 1 can be used, so even the decimal values will work. The value
0 means no and 1 means maximum escaping behaviour. If the Syntax has to be written
in the init line of a squad leader:

this allowFleeing 0.8

The command will effect the whole group. It´s much more dynamic if this Syntax is used
with the random function.

this allowFleeing (random 0.8)

5.12 - Unit is moving to its destination

5.13 - Running patrol, drive or fly

5.14 - Escape behaviour of a unit or a group

92

It’s possible to move units, objects, triggers and markers while a mission is running. We
can say as well, that those parameters will get beamed to another position on the map.
To do this, it’s recommended that the object which has to get moved has a name, then it’s
possible to move objects by using following syntaxes:

Using an object: Name setPos getPos Name

Using an ID: Name setPos getPos (Object ID)

Using coordinates: Name setPos [X,Y,Z]

Using markers: Name setPos getMarkerPos "Marker1"

From marker to marker: "M1" setMarkerPos getMarkerPos "M2"

From marker to object: "Marker1" setMarkerPos getPos Name

Using a vehicle: Name setPos getPos vehicle Player

Using a vehicle II: "Marker1" setMarkerPos getPos vehicle Player

A related order which contains the definition of the altitude of an object, in this case the
value 10.

Name1 setPos [(getPos Name2 select 0),(getPos Name2 select 1),10]

Name1 will be moved to the position of Name2 with a height of 10 meters.

If one wants to move a whole group from one position to another one, so use the Syntax below:

{_x setPos getPos Name} foreach units Group1

Nearly all objects which were placed on the map can be set higher or deeper. Units and
vehicle are not fully supported, so it’s not possible to move them down into the terrain,
but one can set them higher if it's needed. It’s possible to place soldiers in houses or roofs.
If a unit gets set on the map a few meters over the ground, that unit will fall to the ground
if there’s no house or other item below it. That’s because of the gravity-conditional, which
is simulated very well in ArmA. The only exception to this are static objects. Static objects,
like sandbags, are not subject to the gravity, and would float at the adjusted height. To lift
up or lower an object on the map use following syntax:

this setPos [(getPos this select 0),(getPos this select 1),10];

The object where this syntax has been defined would be displayed now at a height of 10
meters. ArmA doesn’t support this function until version 1.8!

C
h

ap
ter 5

5.15 - Moving units, objects, triggers and markers

5.16 - Placing objects higher or lower

93

The contents of the Array [] have to be defined as follows. The first () contain the position
of the object in X-direction. The second () contain the Y-direction and the numbers
behind the () are similar to the Z-direction of the object. If one wants to move Name1
to Name2 than both of the this have to be replaced with their respective names. Maybe
a marker shall move to another position after a target has been destroyed.

Use the following syntax:

Name1 setPos [(getPos Name2 select 0),(getPos Name2 select 1),10];

Name1 has now been moved to the position of Name2, at a height of 10 meters.

Along with the setPos and getPos orders, setPosASL and getPosASL are also available
which are used to define the height of an object over the sea level.

It's possible to define several levels of height for a flying unit. One can do this by using the
waypoints of the respective unit or even through the use of scripts. The following syntax
has to be used:

Name flyInHeight 120

If one places a waypoint on the map on the position where the helicopter needs to land,
the helicopter will land as close as possible to the waypoint's position. But there's a
solution to make a helicopter land precisely at a predefined point on the map. First one
has to place a Heli-H on the spot which the helicopter is to land. It doesn't really make any
difference whether that H is visible or invisible. The waypoint has to be placed directly on
the H, and unload or get out, is to be selected out of the type transport drop-down menu.
The helicopter will land now at this exact position. A further possibility is given by using
the syntax below:

HeliName land "PositionName"

To make a unit move into a building, it's necessary to know whether the building allows
units to enter or not. To do this just move the cross-hair over a building a wait until the
description of the building appears. If that building is able to be entered by a unit, give
the unit a waypoint directly on the building. Now, one can select one of several positions
inside the building which are selectable out of the House option from the waypoint
menu. The unit will move into the predefined position after the respective waypoint has
been executed.

5.17 - The height of a unit

5.18 - Accurate helicopter landing

5.19 - Unit is moving into a building

94

It’s possible to make a unit leave or join his / another group. To do this just use a waypoint
and go back to Chapter 1.5 - Adding Waypoints, and take a look in the subsection, join
and lead. The other method for a unit to join or leave a group is to use a script. To make
a unit leave his group just use following syntax:

[Name1] join grpNull

by using the following syntax one can make a unit join another group:

[Name1] join Name2

At first, Name1 was allocated to a non existing group and then to group Name2. For
use with several units use following syntax:

[Name1, Name2, Name3] join grpNull

and then:

[Name1, Name2, Name3] join Name4

It’s also possible to make an enemy unit join a friendly group, for example, if a Russian
unit needs to fight on the American side against his own troops.

Here, one can define several target possibilities for units. Whether a units designated
target is friendly or enemy makes no difference. The syntaxes which has to be used are as
follows:

Name1 ddooTTaarrggeett Name2 Name1 turns to Name2

Name1 ccoommmmaannddTTaarrggeett Name2 Name1 orders an unit to aim on Name2

Shooting

Name1 doFire Name2 Name1 is shooting on Name2

Name1 doFire ObjNull Name1 is no longer shooting any target

Name1 fire "Weapontype“ Name1 is shooting blind

Name1 commandFire Name2 Name1 is ordering a unit to shoot at
Name2

C
h

ap
ter 5

5.20 - Unit is leaving / joining group

5.21 - Assigning a target to a unit

95

If one wants to make a unit look in a special direction or to another unit, just use following
syntax. But there are also more possibilities available. Using the first option, the unit turns
with its whole body to the respective direction while the other option enables the unit to
beam into the desired direction.

Name1 setDir 160 - Name will be moved into direction of 160

Name1 setFormDir 160 - Name turns to direction 160

Name1 setDir getDir Name2 - Name gets Azimuth of Name2

Name1 doWatch Name2 - Name1 is looking to Name2

Name1 lookAt Name2 - Name1 is looking to Name2

Name1 glaceAt Name2 - Watching Name2 shortly (moves the head only)

Title screen:

Titletext [format["Direction of view: %1", getDir Name1], "plain down"]

By using the following syntax it’s possible to make a unit select his second weapon. It’s
quite necessary to make sure that the weapon class name has been written the correct
way and the unit does have the required weapon in its inventory.

Name selectWeapon "Stinger"

It’s possible to allocate damage to a unit in the form of a value. It’s also possible to allocate
a predefined damage value from one unit to another. To make it work, values are needed
which will give the defined strength of damage to the respective unit. 0 means no
damage and 1 means absolute damage...dead. The decimal numbers between 0 and 1
define the intermediate values.

Please make sure that the syntax setDamage can be written with one or two m. While
getDammage will work only by using two m.

A damage value gets allocated to Name1:

Name setDamage 1 or Name setDammage 1

Name1 receives the damage value of Name2:

Name1 setDamage getDammage Name2

Name1 setDammage getDammage Name2

If the user wants to use the damage value as a condition, the following syntax is needed.

? damage Name >= 0.5 or ? getDammage Name >= 0.5

5.22 - Unit turns to another unit

5.23 - Unit is selecting weapon

5.24 - Inflict damage or heal a unit

96

One might have several reasons for setting up a death zone. If the user wants to create a
scene where many dead bodies are lying all over the ground or a scene where none of the
conflicted forces are to enter a specified area, a death zone is useful. Just enter following
Syntax into the init box of the trigger, and make sure that the dimensions are defined to
the trigger.

{_x setDamage 1} foreach thisList

It’s only necessary to define the side which shall execute the trigger. If the trigger is to be
executed only one time or several times, just define this by using repeatedly.

It is possible to display the units which are located in a predefined trigger area. It’s also
possible to display the unit(s) of one or all forces by defining the respective trigger. To do
this there are two triggers needed which have to be defined as follows.

The first one is the checking trigger. Set Axis a/b with the size of the area which has to
be checked. Select the respective forces which are to be displayed by executing the
trigger and rename the trigger to Area1.

The second trigger is the radio trigger which displays the radio device later in the game.
Set it up with Axis a/b both set to 0, and select repeatedly, then enter the following syntax
in the onActivation field:

Player sideChat format ["%1",list Area1]

If the player is using the radio in game, then the units of Area1 will be displayed.

It is possible to bring out a certain behaviour of a unit by using the following syntax. As
already explained in Chapter 5.26 it’s possible to define this option for every side
individually or even for all forces. To do this just define the area where the units are to
receive the specified order by adding a trigger and renaming it the way you want to. Then,
enter the syntax in the onActivation field of a trigger, waypoint or even a script:

{_x setBehaviour "Stealth"} forEach list Area1

All units would take cover now, for example. But the order setBehaviour "Stealth" is only
one of many possibilities.

C
h

ap
ter 5

5.25 - Defining a death zone

5.26 - Checking of an area

5.27 - Bring about a certain behaviour of a unit in an area

97

This command is great to use in campaigns when the player or even the other units have
to carry over their last save status to the next mission.

If one wants to use this command in his campaign, one has to take care that the unit is
still alive when the mission has ended. That’s important if the status has to be used again
later.

It’s possible to save the status of a unit by using the order saveStatus, as this order name
already explains itself. But this command only works while used in a Campaign, because
the respective value will be saved in the Objects.sav of the campaign. So it won´t work
in multi- or singleplayer missions.

Savestatus
Status1 is variable and can be renamed as you want. The status of Name1 will be saved
now with the variable Status1 by using following syntax:

xy=Name1 saveStatus "Status1"

That status now contains several pieces of information about the unit:

- The identity
- The health status
- The weapon status
- The ammunition status

If one wants to give that saved status to another unit, just use the example which is
explained in the following section.

LoadStatus

xy=Name2 loadStatus "Status1"

The unit will now receive the saved status of Name1. That means that Name2 looks like
Name1, so it’s also equipped with the same weapons, the same ammunition and has the
same health status. Now one can say that Name2 is a clone of Name1.

DeleteStatus
It's also possible to delete each status. Just use following Syntax:

deleteStatus "Status1"

5.28 - Save or load a unit status

98

This syntax can be used for several useful things. So it’s possible, for example, to give a unit
some information about another unit or using the degree of familiarity as condition for
a further executing action. All values from 0 to 4 have to be used here again.

0 Name1 has no knowledge of Name2
1 Name1 has only some knowledge of Name2
2 Name1 has enough knowledge of Name2
3 Name1 has full knowledge of Name2

If one wants to give knowledge of unit to another, one has to use the following Syntax:

Name1 reveal Name2

Name1 now has knowledge of Name2

If one wants to use the knowledge as a condition to execute a trigger, one has to enter
the following Syntax into the OnActivation field.

Name1 knowsAbout Name2 > 1

The trigger will execute and run its actions when Name1 has more knowledge of Name2
than value 1.

The knowledge becomes less over time, so that the value will get back to 0. The syntax
above can be used the other way as well, one only needs to change the > to < .

Name1 knowsAbout Name2 < 0.8

That’s quite useful when the unit always has to stay near to the other units. The trigger will
execute if the unit is moving away from its group or gets killed, then the value gets set
back, as defined above, to 0.8 and the trigger will execute.

If the following Syntax is used for a unit, the unit will no longer get shot or be recognized
by the enemy. This gives the user the possibility to simulate a prisoner of war in the
mission, who would not get shot immediately as he would if he was not a captive.

this setCaptive true or Name setCaptive true

If one wants to reset this, the order true just has to be changed again to false.

C
h

ap
ter 5

5.29 - Degree of familiarity of a unit

5.30 - Friendly enemy

99

In ArmA, the user has the possibility to make the normally hostile forces fight with rather
than against each other, so it’s possible to make west and east friendly to each other and
let them fight against the rest. Furthermore, one can make the civilians become enemy,
so that the military forces have to fight against them as well. This function gives the user
a huge leeway because this option can be defined with a random value. No one will ever
know what will happen when. The friendly side can become enemy the next day again.
It adds a dynamic to the mission and promises lots of fun and helps keep the game from
becoming boring. The following forces are freely definable:

West - East - Guerrila - Civilian - Enemy - Logic

It’s also possible to make one side become friendly to the other one while the other one
is still enemy. This means that the enemy side would open fire immediately if the other
side becomes “known”, but the other side wouldn’t shoot back.

The value, which defines the SetFriend function, moves between 0 and 1. All values above
0.6 means friendly and all values below 0.6 means enemy. Some Syntax examples:

WEST setFriend [EAST,1]

Now WEST would be friendly to EAST but not the other way. To do this, one needs a 2nd
syntax like the following:

WEST setFriend [EAST,0.7]; EAST setFriend [WEST,0.7]

Now both sides are friendly to each other, but it may be that one or both of them will
become enemy to the other again. One doesn’t know if or when that’ll happen, so it adds
a lot of dynamics to the mission. If the values get set down, both sides will be enemy to
each other again.

WEST setFriend [EAST,0]; EAST setFriend [WEST,0]

Random
Of course, everything is possible per the random command. That’s one of the biggest
advantages of this game, one can define everything using that command, that way, no
one knows whether the other side is enemy or friendly against ones self. To do this just
use following Syntax:

GUER setFriend [EAST,(random 0.9)]

Random was defined here as well which determines a coincidence-value for 0.9 by it self.
This can get released with 0.9 (friendly) but also with 0.3 (enemy). No one will know what
happens next.

Using in deathmatch
That function is further explained in Chapter 7.6. It’s possible to make a single side enemy
to itself

EAST setFriend [EAST,0]

5.31 - Friendly Forces

100

By using the syntaxes which are explained in Chapter 5.27, it’s possible to realize several
types of alerts. It’s up to the mission’s history whether and how an alert will be caused.
Here one can find some examples of the possibilities to use the alerts.

Example 1 - Causing an alert while detecting within a trigger area
To do this, just place a trigger with following settings onto the map.

Activation BLUFOR
Detected by EAST

Effects Alarm

If a West is detected by an East within the defined trigger area, the trigger will be executed
and the alert will be caused.

Example 2 - Causing an alert if a unit is detected
The alert shall be executed if a unit is detected.

Activation Connect the trigger with the unit or the player character
Detected by EAST

Effects Alarm

Example 3 - Causing an alert if a unit or an object is no longer present (killed/destroyed)

Activation Connect the trigger with the unit or the object
Not present

Effects Alarm

Example 4 – Alarm triggered if the group named Grp1 is smaller than a predefined value

Activation None
Axis a/b 0
Condition Count Units Grp1 < Value
Effects Alarm

Additional information
It’s possible to run nearly all objects by using a syntax in the onActivation line of the
trigger. For example, to let all units which are located in the alert area named Area1
receive knowledge about the unit or the player character, just use following Syntax:

{_x reveal Player} foreach list Area1

C
h

ap
ter 5

5.32 - The Alert

101

To check whether a unit is still alive, one needs a trigger with following settings. Of course
there are several variants available as well. One can see an example of a method often
used.

Activation None
Axis a/b 0
Condition ! (alive Name) or not alive Name

The trigger is now checking globally by (by using Axis 0/0) whether Name is still alive and
would execute its effects at Activation if Name gets killed.

Sometimes it might be needed that the distance of two units or objects has to be used
as condition to run a script or execute a trigger. To do this just use following syntax:

Player distance Jeep1<= 50 or Player distance Jeep1 == 50

Local variable value allocated: _distance = Player distance Jeep1

Later in the Text:

titleText [format["%1 Meters", Player distance Jeep1], "plain down"]

It's possible in ArmA to define all flagstaffs in the game with individual flags. The flags
can be created by yourself or just use one of the flag packs which can be downloaded
from the Fan-sites. To make the flag visible in the mission, just copy the image file into the
missions folder and enter the respective link into the init field of the flagstaff in the game.
Here, you can see an example of such a syntax:

this setflagtexture "Name.paa"

The file formats PAC, PAA and JPG are possible using pixel dimensions of 512 x 256.
The following flags can be used in the game by using this path:

this setFlagTexture "\ca\misc\data\usa_vlajka.paa"

USA Sovjet union Racs
usa_vlajka_co.paa rus_vlajka_co.pac jih_vlajka.paa

Russia SLA
rus_vlajka_co.paa sever_vlajka.paa

5.33 - Dead as condition

5.34 - Distance of two units or objects

5.35 - Allocate a flag to a flagstaff

102

If one wants to extinguish a fire or light it up later in the mission, the fire needs to be
named and that name used in the following syntax:

this inFlame true or Name inFlame false

By using the following syntax it’s possible to allocate or to remove switchable units while
a mission is running. A unit will be playable by using this Syntax:

addSwitchableUnit Name

To make that unit unplayable again:
removeSwitchableUnit Name

If one wants to switch to another player, just use this Syntax:
selectPlayer Name

To read out the side of a unit in a multiplayer area, use following syntax:

? Side Player == West
Name Player == "Mr-Murray"

Later in the Text:

titleText [format["%1 -Soldier", side Player],"plain down"]
titleText [format["Hey %1", name Player],"plain down"]

titleText [format["Typ: %1", typeOf Player],"plain down"]

Sometimes it might be useful to oppress the input of the player. Certain situations, like sequences or
map animations, shall only give some additional information to the player, so it’s quite important to
make sure that the players input is no longer disabled than strictly necessary. Otherwise the game may
become boring to the player or the player starts to get frustrated and exits the game. To activate this
function, just use the disableUserInput syntax. One only has to switch it to true, or false if one wants
to delete it again.

disableUserinput true

Its possible to force the map on the screen while the game is running. There’s no input of the
default key (m) needed. This function is quite necessary while creating animations or sequences
which shall give some further tactical information to the player. Its also possible to simulate many
different things, like troops movements and more.

forceMap true
Now it would be possible to make markers moveable on the map for example. So it's
necessary to oppress the player input while the animation is running.

C
h

ap
ter 5

5.36 - Burning fire

5.37 - Add or remove switchable units

5.38 - Read out and display player side, - name, -type

5.39 - Oppress player input

5.40 - Force the map on the screen

103

Sometimes it might be useful to set the distance of view higher or even lower. For
example, one may want to create a sequence up to a mountain where a good view is
needed. So it’s possible in the game to change the distance of view, even if only for a
short time. It’s also possible to reduce the view of distance again later. This saves
performance on the players PC. The view of distance is adjustable from 500 up to 10,000.
Just use following syntax:

setViewDistance 500

The weather is predefined in the editor, so one can select a kind of weather which will be
active all the time the mission is running. But if one wants to make the mission more
interesting because the weather is changing from time to time, one would need a special
syntax to make it possible. That syntax makes the weather random, so one can´t say which
kind of weather will be next. The syntax contains some values again. These values are
moving between 0 and 1. This, interconnected with random-time and random-fog
provides a more dynamic mission.

120 setOvercast 0.8

The first value (120) displays the time in seconds which is needed before the weather will
change again. The second value (0.8) displays the kind of weather. 0 means that there
are no clouds at the sky and the sun is shining. Every decimal number adds more clouds
and even rain to the sky. Within a value of 0.5, the whole sky is full of clouds and within
the value of 1, heavy thunderstorms are possible.

Random weather:
Its possible to decide this with a syntax which determines the weather-value per chance.
If that syntax starts right when the mission begins, the weather will be different every
time the mission begins. To do this just use following syntax:

0 setOvercast (Random 0.8)

Rain:
It's also possible to adjust the rain without the SetOvercast command.

0 setRain 0.8

10 setRain (Random 0.8)
Fog:
The syntax to use the same function for fog is similar to the one used for weather or rain.
Only the syntax order is different:

10 setFog 0.6

60 setFog (Random 0.8)

5.41 - Adjusting distance of view

5.42 - Adjusting the weather

104

The date and time of day are possible to adjust while the mission is running. One can
change these by using fixed values or even with random values.

Year, month, day, hour, minute of day:
By using following syntax one can change the year, the day and the time of day as well.
This syntax has to be defined in following sequence.

setDate [2006, 11, 30, 9, 0]

The 2006-11-30 at 09:00 (am) has been defined here. Remember that the game engine
has been written with European standard and so you have to select/enter 21:00 if you’d
like to use 09:00 pm. It’s possible of course to generate some options with random values.
You can see an example right here:

setDate [2006, 11, 30, (ceil random 8), (random 60)]

Time:
Its further possible to define the time of day individually:

SkipTime 1 This value skips the time by 1 hour
SkipTime –1 This value skips the time 1 hour backwards

By using the following syntax it’s possible to slow the speed of the game down or even
up. Especially while creating sequences, it’s possible to make quite nice slow motion
effects. It’s also possible to enable a bullet mode as explained in Chapter 6.10. That isn’t
quite realistic but gives a nice experience to the user later in the game.

Slow motion:
All values which are set below 1 define the slow motion area. But the most effects can be
reached by using the decimal values. The smaller the value the more slow the effect.

SetAccTime 1.0 - Normale Zeit

SetAccTime 0.0500 - Zeitlupe

Time sprint:
As the speed can get slowed down, It can be sped up as well. But that isn’t quite useful.
But if one wants to do it anyway, all values from 1 up to 8 can be used. This ones gives
some more speed to the player character and the AI characters foot.

C
h

ap
ter 5

5.43 - Adjusting date and time of day

5.44 - Slow motion or time sprint

105

It’s possible to generate units, whole groups and objects while a mission is running.
Furthermore, they can get deleted again when they are no longer needed. This offers lots of
saved performance to the users PC because the objects will be generated right when they
are needed. There are some possible variants available. Here you can get some examples.

Using with objects:
In the following example a D30 gun will be generated at Position XYZ:

Ari1="D30" createVehicle [x,y,z]

By using the setDir command, it’s looking like this:

Ari1 setDir 190

It might so happen that a vehicle can’t be used after it has been generated. To avoid this,
the following order should be used as well:

Ari1 lock false

So it’s possible now to use this vehicle. If one wants to generate a(n) unit/object at the
position of another unit/marker/game logic, just use this syntax:

Bomb="SH_120_HE" createVehicle position Player

By using the following syntax, a bomb will be created directly over unit S1 at a height of 50 meters.

Bomb=“SH_120_HE” createVehicle [(getPos S1 select 0),(getPos S1 select 1),50]

Einheitsbezogen:
Unfortunately, one can not prevent that the syntax line will be very long to generate a
unit. In this example, a sniper (WEST) named Name1 will be generated right on the
position of his leader (S1/Player). But make sure the leader has been placed on the map
first. One can replace the unit (leader) with a game logic as well. The generated soldier has
a skill value of 0.4 and his rang is Corporal.

"SoldierESniper" createUnit [position player, S1, "Name1=this",0.4,"Corporal"]

It’s also possible to define it another way, so the position would get defined by a marker
which has to be placed at the position of the leader. That markers properties have to be:
Axis (a/b) 0, so that marker is not visible.

"SoldierESniper" createUnit [getMarkerPos "Marker1", EGrp1,0.8, "Corporal"]

This unit hasn't been allocated a name because a name is only needed if one wants to use
this unit later in the mission. The leader, in this case, was named EGrp1.

5.45 - Generating units and objects

106

Using with groups:
Furthermore it’s possible to generate whole groups instead of single units. These units
can be renamed individually if one wants to define special things to them later. The
following script is used as an example only. In this script a group will be generated at the
position of the marker "GrpOneM". That marker has already been placed on the map.

As one can see, the first unit gets renamed as leader and she also is allocated a higher
rank. This unit will be the leader of the group. The name of the whole group is "GrpOne"
as well. To make sure that this group works correctly, read the following paragraph
carefully.

Notice:
If soldiers of one side are to be generate while the mission is already running and no unit
of the respective side has already been placed, it’s important to allocate a center to this
side to make sure that these units can communicate with each other. Then the setFriend
order has to be used and the both sides needs to become enemy's to each other.
Otherwise the AI wouldn’t start shooting the enemy side. It’s necessary to define the
setFriend order and the center within the init.sqs script. If one has already placed units
from all parties on the map, then these centers will be generated by the engine
automatically. In the following example you can get the entries for the example Init.sqs:

Init.sqs

Center
As how Center can be created, it can be deleted again by using deleteCenter SIDE. But that
would be unnecessary.

C
h

ap
ter 5

GrpOne = Creategroup EAST;

_Leader="SquadLeaderE" createUnit [getMarkerPos "GrpOneM", GrpOne, "", 1, "Sergant"];
_Unit2="SoldierEB" createUnit [getMarkerPos "GrpOneM", GrpOne, "", 1, "Corporal"];
_Unit3="SoldierEB" createUnit [getMarkerPos "GrpOneM", GrpOne, "", 1, "Corporal"];
_Unit4="SoldierEG" createUnit [getMarkerPos "GrpOneM", GrpOne, "", 1, "Corporal"];
_Unit5="SoldierEMG" createUnit [getMarkerPos "GrpOneM", GrpOne, "", 1, "Corporal"];
_Unit6="SoldierEAT" createUnit [getMarkerPos "GrpOneM", GrpOne, "", 1, "Corporal"];
_Unit7="SoldierESniper" createUnit [getMarkerPos "GrpOneM", GrpOne, "", 1, "Corporal"];

exit

Createcenter EAST
Createcenter WEST

WEST setFriend [EAST,0]
EAST setFriend [WEST,0]

107

To generate a flare or a smoke shell over an object or another XYZ Position, one can
actually use the same order which is already explained in Chapter 5.45. The only different
things are the class names, because these are not similar to the magazine names. You can
get the necessary one here:

Flare1="F_40mm_Green" createVehicle [x,y,z]

If you´d like to generate something like this over or near to the XYZ Position:

Smoke1="Smokeshell"
createVehicle [(getPos Name1 select 0),(getPos Name1 select 1), 10]

Make sure that these two options are written in one line (but this not really possible on
this page of the guide). One can also use a short one:

Smoke1="Smokeshell" createVehicle position Name

Notice!
Flares have to be generated within a level of 100 metres. Flares, and even smoke- gun
grenades can be selected:

F_40mm_White F_40mm_Red

F_40mm_Green F_40mm_Yellow

Smokeshell SmokeshellRed

SmokeshellGreen B_40mm_HE

One can generate other effects as well. For example an SH_125_HE or something similar
to generate explosions. So please take a look into Chapter 3.10. Several explosive devices
are listed there.

Here you can take a look at some example previews.

5.46 - Generate flares, smoke and explosions

108

While only one syntax is needed to delete objects, there are several different syntaxes
needed to delete units. If one wants to delete only the gunner of a Blackhawk - which
hasn’t been renamed - the syntax example will look like the ones below:

deleteVehicle Name - deletes all which has a name

If one wants to delete the gunner of a helicopter, this unit needs to leave the chopper
first. Before this happens, a name needs to be allocated to him. To do this just define the
following syntax into the init line of the chopper:

Name=(Gunner Heli1)

Now, one can let him get out of the helicopter. It's also possible to write Gunner Heli1.

Name action ["Eject", Heli1] or just doGetOut Name

The name is important when it's time to delete the gunner. (Gunner Heli1) wouldn’t work.

deleteVehicle Name

One can do all this to the Commander, the Driver (Pilot) or the whole Crew.

Delete units in a predefined area
To do this just create a trigger in an arbitrary size and rename it as you want (in this
example: Zone1). Then select the side which has to be deleted or adjust it with the
respective side or the option “Anybody”. The syntax to delete:

{deleteVehicle _x} forEach list Zone1

By using the syntax below it's possible to rename the radio menu while the mission is
running. These menu options are numbered from 1 up to 10.

1=Alpha, 2=Bravo, 3=Charlie, ...

Its possible to rename this by using following Syntax:

1 setRadioMsg "Alpha-Team"

The first entry of radio Alpha has been renamed to Alpha Team. If
one wants to get an empty radio name, just set an empty space
between the two quotes.

The radio option does still exist but it's no longer visible for the
player and he’ll think that its not available. Because instead of text,
nothing more would be visible.

That option can be used as a condition if a whole team was killed.

C
h

ap
ter 5

5.47 - Delete units and objects

5.48 - Adjusting radio menu

109

It is possible to allocate different call-signs for several groups. So it is possible to
distinguish each group from each other, if someone has spoken or even sent a side-chat.
In Armed Assault it's possible now to allocate names for each group individually. That
option was not possible in Operation Flashpoint. Furthermore it is possible now to define
colors to each group. Here you can see some syntax examples.

Default:

Name setGroupid ["Alpha","GroupColor0"]

Free Text:

Name setGroupid ["Assault-Team-Alpha","GroupColor2"]

One can use following values:

Group names:

Group colors:

Note:
It may be that the color will not be visible, but this issue has been known since Operation
Flashpoint. One can avoid this by writing both things in one line. The color needs to be
defined manually and the last part of the syntax, - where the color has to be defined
normaly - free. In the following example, the team was named Assault-Team-Alpha and
was assigned a red color.

Name setGroupid ["Assault-Team-Alpha - Red", ""]

"Alpha"
"Bravo"

"Charlie"
"Delta"
"Echo"

"Foxtrot"

"Golf"
"Hotel"
"Kilo"

"Yankee"
"Zulu"

"Buffalo"

"Convoy"
"Guardian"

"November"
"Two"

"Three"

0 – No Color
1 – Black
2 – Red
3 – Green

4 – Blue
5 – Yellow
6 – Orange
7 – Pink

5.49 - Allocate a call-sign to a group

110

There are several possibilities available to send a radio message. The message can be
displayed globally, side, group or even only to the units in a single vehicle. In the table
below are some examples:

Name sideChat "Test 1-2" Name talks to his side
Name groupChat "Test 1-2" Name talks to his group only
Name globalChat "Test 1-2" Name talks to all parties
Name vehicleChat "Test 1-2" Name talks to passengers inside a vehicle

If one wants to send a message from the headquarters, use following syntax:

[Side,"HQ"] sideChat "Move to your position and wait for further orders!"

With the release of Armed Assault, a new function has been enabled which wasn´t
available in Operation Flashpoint. The user now has the possibility to define a sound right
at the position he wants. In the following example, a sound named Littledog has been
placed right on the position of the player.

Dog1=createSoundSource ["LittleDog",position Player,[],10]

The value 10 defines the range from the source of the sound to the player. By using this
syntax, this script has been renamed and became moveable. So one can replace it now
on any place on the map. The required syntax is:

Dog1 setPos getPos Name

So it's possible now to generate the sounds without placing anything on the map. The
sounds can be found under empty/sounds or in a trigger or waypoint under the
subsection “effects”. There are some more sounds available:

Stream, Alarm, BadDog, BirdSinging, Chicken, Cock, Cow, Crow, Crickets1,
Crickets2, Crickets3, Crickets4, Dog, Frog, Frogs, LittleDog, Music, Owl, Wolf

If one wants to create his own sound, it has to be defined in the description.ext first. This
sound can be used by typing the respective name into the syntax. This name should be
the one which has been defined in the description.ext before.

MySound=createSoundSource ["SoundName",position Player,[],10]

C
h

ap
ter 5

5.50 - Send a radio message

5.51 - Creating sound

111

If one wants to use his own music in a mission, the files have to be defined in the
description.ext first. The description.ext has already been explained in Chapter 2.3. One
can find the explicit explanation of this theme here.

First you have to create the folder "sounds" in the missions folder. One can also create
another folder named "music". Make sure that those names were written small. Then copy
all the desired music files into the respective folder. The description.ext offers different sub
areas, so that these files are controllable individually. This is quite necessary, because if a
player is fading down the music, the radio sound wouldn’t get faded down as well. The
following example shows the way to define the description.ext to make it work as one
wants.

Description.ext

Continued on next page.

// === Music ==>
class CfgMusic
{

tracks[]= { Track1,Track2 };

class Track1
{

name = "Track1";
sound[] = {\music\track1.ogg, db+0, 1.0};

};

class Track2
{

name = "Track2";
sound[] = {\music\track2.ogg, db+0, 1.0};

};
};

// === Sounds ===>
class CfgSounds
{

tracks[]= { Artillerie };
class Artillerie
{

name = " Artillerie ";
sound[] = {\sounds\ artillerie.ogg, db+0, 1.0};

};
};

5.52 - Using own sounds

112

As one can see in the example above, two additional areas for radio and the surround-
sound classes have been defined as well.

- Class CFG music

- Track list

- Class Track1

- Name Track1
- Source,

db = Loudness,
1.0 = Speed of the sound

- Hints to the sounds

By using the syntax db, it’s possible to define the loudness of the sound. It’s possible to
adjust the sounds here which are too loud or too silent.

The speed option 1.0 defines the speed which is used while the sound will be played. So
it’s possible to make some speech samples higher or deeper by playing them slower or
faster. But don’t adjust it too high or your character will sound like M. Mouse.

C
h

ap
ter 5

// === Radio==== ==>
class CfgRadio

{
sounds[] = { };
};

// === Environment===>
class CfgSFX

{
sounds[] = {};
};

class CfgEnvSounds
{
sounds[] = {};
};

class CfgMusic
{

tracks[]= { Track1,Track2 };

class Track1
{
name = "Track1";
sound[] = {\music\track1.ogg, db+0, 1.0};

titles[] = { }; };
};

113

If one wants to play a sound in the editor, the respective sound has to be selected out of
the effects sub area of a waypoint or a trigger. To make it work one has to save the mission
first. Then the mission needs to be loaded again. Now ArmA can read out of the new
description.ext. You also have the possibility to run those sounds by using a syntax.

playMusic "Track1"

playMusic ["Track1", 30] (Plays Track1 from Second 30)

playSound "Artillerie"

Name say "Soundname"

As already explained, all these sounds can be faded down by changing the respective syntax.

10 fadeSound 0.5 10 fadeMusic 1 0 fadeRadio 0.1

The first value is needed for the time when this option has to appear. The second one is
needed to define the loudness of the sound file.

Connecting sounds with text
It's possible to connect a sound with a text which will be displayed right in the moment
when the sound plays. There’re two ways to make it work. The first one is to use the
Stringtable and define the text as a string. The other way is to enter the text right into the
description.ext. Now the text appears when the sound begins to play. This option is
actually used for talk and even radio sounds.

One can find a example in the script below:

// === Radio ==>
class CfgRadio
{
sounds[] = {RadioMsg1, RadioMsg2};

class RadioMsg1
{

name = "RadioMsg1";
sound[] = {"\sound\ radiosound1.ogg", db+10, 1.0};
title = "It´s done. I am ready for further orders.";
};

class RadioMsg2
{

name = "RadioMsg2";
sound[] = {"\sound\radiosound2.ogg", db+10, 1.0};
title = {$STR_RADIO_2};

};
};

114

It’s possible to set an identity for every unit individually. But that wouldn’t be necessary
because it would be a huge effort. So it’s more useful to set the identity for the main
characters only.

The identity has to be defined in the description.ext before it can be used in the mission.
To do this, just take a look at the example below.

As one can see, the names are to be freely defined. Only the faces and the voices are
predefined. Please make sure that the clasps were set on the correct position in the
Description.ext!

C
h

ap
ter 5

class CfgIdentities
{

class MrMurray
{

name = "MrMurray";
face = "Face33";
glasses = "none";
speaker = "Dan";
pitch = 1.00;

};

class Memphisbelle
{

name = "Memphisbelle";
face = "Face10";
glasses = "none";
speaker = "Howard";
pitch = 1.00;

};

class Dan
{

name = "Dan";
face = "Face22";
glasses = "none";
speaker = "Russell";
pitch = 1.00;

};

};

5.53 - Set Identity

115

If one wants to set the predefined identity to the respective unit, the predefined name has
to be written into the init line of the unit.

Name1 setIdentity "YourName" or this setIdentity "Mr-Murray"

This Identity can be saved and loaded again while used in a Campaign. The needed value
will be saved directly in the Objects.sav of the Campaign and can be deleted again by
using deleteIdentity “XYZ”.

Name1 saveIdentity "Name1Save" or Name1 loadIdentity "Name1Save"

To allocate a face to a unit just use this Syntax:

Name1 setFace "Face33" or this setFace "Face33"

Armed-Assault contains 61 different faces which can be selected. These faces are numbered from
Face1 up to Face57 and FaceR01 up to FaceR04. If the user wants to use his own face file, this
file needs to be saved in the Missions- respective User folder. To make it work use following Syntax:

Name1 setFace "MyPicture.jpg"

Possible pixel sizes: 1024*1024; 512*512; 256*256. Maximal file size 100 Kb!

Glasses:
One can allocate glasses to a unit. Take a look at the examples which are listed below:

glasses = "Sunglasses"; Sunglasses
glasses = "Spectacles"; Normal glasses
glasses = "None"; No glasses

Speaker:
The following voices are selectable in ArmA as of today:

Amy Dan Howard Robert Ryan
Brian Dusan Mathew Russell

Pitch:
By adjusting the pitch value (pitch = 1.00) the voice pitch can be adjusted higher or deeper.

It’s possible to allocate mimics to the units. This possibility enables the units to become
emotional. They can look friendly or even bad. To do this just use following syntax:

Name1 setMimic "Smile"

Normal - Surprise - Agresive - Hurt - Ironic - Smile - Cynic - Angry - Sad

The following Syntax is changing the mimics by adjusting the values from 0 to 1.

Name1 setFaceAnimation 0.5

5.54 - Mimics

116

The action commands are used to allocate the various actions to the units. So there are
several possibilities available for how to define them. Read the explanations here:

Object: The unit (name) which has to execute the action. If one wants to
use a vehicle then the Commander will be selected automatically.

Type: Name of the respective action (see action orders overview)

Target: This option is similar to Object and actually means the name of
the unit which has to execute the action.

Syntax:
The necessary syntaxes are listed here:

Name action [<type>]

Name action [<type>, <target>]

Name action [<type>, <target>, additional parameters]

To use additional parameters like weapons and / or magazines, these need to be defined
as shown in the lists. Fire is next to Action, another possibility but this only works for a
few orders:

Name fire
["PipebombMuzzle", "PipebombMuzzle", Pipebomb]
- Unit activates a satchel charge

["M203Muzzle", "M203Muzzle", "1Rnd_HE_M203"]
- Unit fires a granade

["M203Muzzle", "M203Muzzle", "FlareGreen_M203"]
- Unit is firing a flare

["HandGrenadeMuzzle", "HandGrenadeMuzzle", "HandGrenade"]
- Unit is throwing a hand grenade

["SmokeShellRedMuzzle", "SmokeShellRedMuzzle", "SmokeShellRed"]
- Unit is throwing a smoke grenade

["bombLauncher", "bombLauncher", "6Rnd_GBU12_AV8B"]
- Harrier is dropping a bomb

Name action
["TouchOff",Name] - Executes Satchel Charges

["Eject",Heli1] - Gets out

["Hidebody", Name2] - Unit is hiding a corpse

["CancelAction", Name] - Aborting action

C
h

ap
ter 5

5.55 - The Action Order

117

118

Overview of the most often used action commands
The following is a command overview of the most important action commands. Some of
them don’t work from of the beginning and / or haven’t been activated yet.

["None", <target>]
["GetInCommander", <target>]
["GetInDriver", <target>]
["GetInGunner", <target>]
["GetInCargo", <target>]
["Heal", <target>]
["Repair", <target>]
["Refuel", <target>]
["Rearm", <target>]
["GetOut", <target>]
["LightOn", <target>]
["LightOff", <target>]
["EngineOn", <target>]
["EngineOff", <target>]
["SwitchWeapon", <target>, <weapon index>]
["UseWeapon", <target>, <weapon index>]
["TakeWeapon", <target>, <weapon name>]
["TakeMagazine", <target>, <magazine type name>]
["TakeFlag", <target>]
["ReturnFlag", <target>]
["TurnIn", <target>]
["TurnOut", <target>]
["WeaponInHand", <target>, <weapon name>]
["WeaponOnBack", <target>, <weapon name>]
["SitDown", <target>]
["Land", <target>]
["CancelLand", <target>]
["Eject", <target>]
["MoveToDriver", <target>]
["MoveToGunner", <target>]
["MoveToCommander", <target>]
["MoveToCargo", <target>]
["HideBody", <target>]
["TouchOff", <target>]
["SetTimer", <target>]
["Deactivate", <target>]

C
h

ap
ter 5

119

["NVGoggles", <target>]
["ManualFire", <target>]
["AutoHover", <target>]
["StrokeFist", <target>]
["StrokeGun", <target>]
["LadderUp", <target>, <ladder index>, <ladder position>]
["LadderDown", <target>, <ladder index>, <ladder position>]
["LadderOnDown", <target>, <ladder index>, <ladder position>]
["LadderOnUp", <target>, <ladder index>, <ladder position>]
["LadderOff", <target>, <ladder index>]
["FireInflame", <target>]
["FirePutDown", <target>]
["LandGear", <target>]
["FlapsDown", <target>]
["FlapsUp", <target>]
["Salute", <target>]
["ScudLaunch", <target>]
["ScudStart", <target>]
["ScudCancel", <target>]
["User", <target>, <action index>]
["DropWeapon", <target>, <weapon name>]
["DropMagazine", <target>, <magazine type name>]
["UserType", <target>, <action index>]
["HandGunOn", <target>, <weapon name>]
["HandGunOff", <target>, <weapon name>]
["TakeMine", <target>]
["DeactivateMine", <target>]
["UseMagazine", <target>, <magazine creator>, <magazine id>]
["IngameMenu", <target>]
["CancelTakeFlag", <target>]
["CancelAction", <target>]
["MarkEntity", <target>]
["Talk", <target>]
["Diary", <target>]
["LoadMagazine", <target>, <magazine creator>, <magazine id>,

<weapon name>, <muzzle name>]

It's possible to allocate animations to a unit by using the animation commands. One can divide all
commands in two main sections. The first section is the command called switchMove which will
switch the unit into the respective animation. the second one is the playMove command, which
has to be used if one wants to run an animation. Some commands don't really cooperate with the
PlayMove command. If it happens, one has to use the SwitchMove command. Every animation
needs its time to get started. To avoid trouble, especially when a second animation follows after the
first one, it's recommended to use the delay command (~10). The delay is a small code which
pauses the game engine for the defined length of time before going on with the next command.

Animation commands are a nice feature. For example a base where some units are doing
some sports, talking to each other or another soldiers salute to one who is passing the
entrance to the base. All these animations are to be realized by using the animation
commands. The way how to write such a script is explained below:

Name playMove "Animation command"

Name switchMove "Animation command"

A list with the most used commands will be shown on the list below:

Animation Bezeichnung
AmovPercMstpSnonWnonDnon_carCheckPush
AmovPercMstpSnonWnonDnon_carCheckWheel
AmovPercMstpSnonWnonDnon_carCheckWash
AmovPercMstpSnonWnonDnon_exerciseKata
AmovPercMstpSnonWnonDnon_exercisekneeBendA
AmovPercMstpSnonWnonDnon_exercisekneeBendB
AmovPercMstpSnonWnonDnon_exercisePushup
AmovPercMstpSlowWrflDnon_Salute
AmovPercMstpSlowWrflDnon_SaluteIn
AmovPercMstpSrasWpstDnon_SaluteIn_end
AmovPercMstpSlowWrflDnon_SaluteOut
AmovPercMstpSrasWpstDnon_SaluteOut_end
AmovPercMstpSnonWnonDnon_seeWatch
AmovPercMstpSnonWnonDnon_talking
AmovPercMstpSlowWrflDnon_talking
ActsPercMstpSnonWnonDnon_MarianQ_shot1man
ActsPercMstpSnonWnonDnon_MarianQ_shot3man
ActsPercMstpSnonWnonDnon_MarianQ_shot4man
ActsPercMstpSnonWnonDnon_MarianQ_shot5man
ActsPercMstpSnonWnonDnon_MarianQ_TVstudioMan_Loop1
AmovPsitMstpSlowWrflDnon_Smoking
AmovPsitMstpSlowWrflDnon_WeaponCheck1
AmovPsitMstpSlowWrflDnon_WeaponCheck2
AmovPsitMstpSnonWnonDnon_ground
AmovPercMstpSnonWnonDnon_AmovPsitMstpSnonWnonDnon_ground
AmovPsitMstpSnonWnonDnon_ground_AmovPpneMstpSnonWnonDnon

Vehicle control
Vehicle control
Washing Vehicle
Martial Arts
Knee-bend slow
Knee-bend fast
Pushup
Starts saluting
Strats saluting
Ends saluting
Ends saluting
Ends salutíng
Watching the clock
Is talking
Is talking
Is talking
Is talking
Secure
Secure 2
Sitting
Sitting, smoking
Sitting,/checking weapon
Sitting/checking weapon
Sitting, hands back
Sit down /stand up
Sit down /stand up

5.56 - The animation command

120

121

C
h

ap
ter 5

Animation Bezeichnung
AmovPsitMstpSlowWrflDnon_AmovPercMstpSlowWrflDnon
ActsPercMstpSnonWnonDnon_MarianQ_TVstudioMan_Loop1
ActsPercMstpSnonWnonDnon_MarianQ_TVstudioMan_Loop2
ActsPercMstpSnonWnonDnon_MarianQ_TVstudioMan_Loop3
ActsPercMstpSnonWnonDnon_MarianQ_TVstudioMan_Loop4
ActsPercMstpSnonWnonDnon_MarianQ_TVstudioMan_LoopLong
ActsPercMstpSnonWnonDnon_MarianQ_WarReporter
AwopPpneMstpSgthWnonDnon_start
AwopPpneMstpSgthWnonDnon_throw
AwopPpneMstpSgthWnonDnon_end
AwopPercMstpSgthWrflDnon_Throw1
AswmPercMrunSnonWnonDf_AswmPercMstpSnonWnonDnon
DeadState
SprintBaseDf
SprintBaseDfl
SprintBaseDfr
AwopPercMstpSoptWbinDnon_rfl
AmovPercMstpSnonWnonDnon_turnL
AmovPercMstpSnonWnonDnon_turnR
AmovPercMstpSnonWnonDnon_Ease
AmovPercMstpSnonWnonDnon_EaseIn
AmovPercMstpSnonWnonDnon_EaseOut
AmovPercMstpSnonWnonDnon_AmovPknlMstpSnonWnonDnon
AmovPercMstpSsurWnonDnon
AmovPercMstpSnonWnonDnon_AmovPpneMstpSnonWnonDnon
AmovPercMstpSnonWnonDnon_AinvPknlMstpSnonWnonDnon
AmovPercMstpSlowWrflDnon_AmovPsitMstpSlowWrflDnon
AinvPknlMstpSnonWnonDnon_AmovPknlMstpSrasWpstDnon
AinvPknlMstpSlayWrflDnon_AmovPknlMstpSrasWrflDnon
AinvPknlMstpSlayWrflDnon_healed
AinvPknlMstpSlayWrflDnon_healed2
AinvPknlMstpSnonWnonDnon_healed_1
AinvPknlMstpSnonWnonDnon_healed_2
AinvPknlMstpSlayWrflDnon_medic
AinvPknlMstpSnonWnonDnon_medic_1
AinvPknlMstpSnonWnonDnon_medic_2
AidlPknlMstpSnonWnonDnon01
AmovPercMrunSlowWrflDf_AmovPpneMstpSrasWrflDnon
AidlPercMstpSnonWnonDnon08
AinvPknlMstpSnonWnonDnon_1
AinvPknlMstpSnonWnonDnon_2
AinvPknlMstpSnonWnonDnon_3
AinvPknlMstpSnonWnonDnon_4
AmovPercMstpSnonWnonDnon_AwopPercMstpSoptWbinDnon
AmovPercMstpSnonWnonDnon_Dancing
AmovPercMstpSnonWnonDnon_flipflop

Stands up
Sitting
Sitting and talking
Sitting and talking
Sitting and talking
Sitting and talking
Standing around
Lying, throwing granate
Lying, throwing granate
Lying, throwing granate
Throwing granate
Swimming
Dying
Running straight ahead
Running left a circle
Running right a circle
Using Binoculars
Standing around
Standing around
If attitude assumes
If attitude assumes
If attitude assumes
Kneeing on one knee
Hands behind the head
Lying, standing up
Putting some things down
Sitting on the ground
Knees down and gasping
Knees down and gasping
Healing animation
Healing animation
Healing animation
Healing animation
Bandaging a victim
Bandaging a victim
Bandaging a victim
Takes cover
Takes cover
Shouldered the weapon
Kneeing down, ammobox
Kneeing down, ammobox
Kneeing down, ammobox
Kneeing down, ammobox
Shouldered the weapon,
Taking Binoculars
N/A
N/A

By using the following syntax it’s possible to disable the AI units. That means that those
units will not fire and not move. The following possibilities are available:

Name disableAI "Move" - Unit stops moving
Name disableAI "Target" - Unit is no longer observing enemy units
Name disableAI "Autotarget" - Unit doesn’t watch anything
Name disableAI "Anim" - AI is no longer able to change any animation

By using enableAI all the effect will get deleted and the unit is behaving normal again.

This order is quite useful to make objects or units move over the map. If one wants to
generate an aircraft which has to be in the air when it has been generated, this order will
make it move in a pre-defined direction so that the pilot has time to speed up his aircraft.
To do this just use following syntax:

Name setVelocity [0,100,100]

By using the following syntax it's possible to get some information displayed on the
screen. There are several possibilities to do this:

hint "Text" - Text appears after call
hintC "Text" - Text appears after call and the game will be paused
hintCadet "Text" - Appears in Cadet mode only

If a unit is changing his position and stance when he should be holding still, the following
commands can be used to hold the unit in place in a specific stance. The orders kneel and
kneelDown are intended on the part of BI but they don’t really work up to version 1.14. But
those commands shall work in further versions so you can get the needed syntaxes below:

Name setUnitPos "Up" - Unit keeps standing
Name setUnitPos "Middle" - Unit is kneeling
Name setUnitPos "Kneel" - Unit is kneeling
Name setUnitPos "KneelDown" - unit is kneeling and is changing between

lying and kneeling by itself
Name setUnitPos "Down" - Unit is lying
Name setUnitPos "Auto" - Unit decides for itself

122

5.57 - Disable AI units

5.59 - The on-screen information (hint)

5.58 - SetVelocity

5.60 - Units keeps lying or keeps standing

123

Chapter 6
- Mission Specials -

After you read the first 5 chapters, hopefully quite attentively, you’ll get some more
information and specials for your mission. These can be realized with a little exertion
quickly and easily. Your mission will be much more interesting and exciting by utilizing
some of these specials. All features of this chapter have been built basically on scripts,
but that will not make them less functional, they work as well as functions would.

Because all of the examples are extensive, and retyping them could create errors in the
scripts, you can download the scripts with additional example missions from the forums
at www.forum.german-gamers-club.de or www.mapfact.net, which I’ve uploaded there.

6.1 The Paratroopers 124
6.2 The GPS-System 125
6.3 The Action Menu Entry 126
6.4 The Backpack 126
6.5 Random Positions 130
6.6 The Mapclick 132
6.7 The Artillery 134
6.8 Deleting Killed Units And Vehicles 139
6.9 Suppressing Gaming Speed Constantly 140
6.10 The Bullet Mode 141
6.11 A Script To Track Down Enemy Units 142
6.12 The Air Strike 143

C
h

ap
ter 5

Churchill (Anton Voß)

Paratroopers are always a nice feature in missions, so I will explain one of several variants here.

The Helicopter
In this example we place a helicopter named Heli1 on the map. If the user doesn’t want
the helicopter to take off right when the mission begins, just set the fuel status down to
empty by using the command this setFuel 0. When the helicopter has to take off later in
the mission, just set the fuel status back to 1 by using the command this setFuel 1. At the
time we have a disadvantage here, because the helicopter crew will exit the chopper. We
have to hope that one of the following patches will fix that problem.

The altitude
The altitude should be set up to 80 or 100 metres or your troopers will get hurt and probably
die. To avoid this just use the following syntax in the respective waypoint of the chopper:

Heli1 flyInHeight 120

The landing zone
The landing zone should be selected far way from villages or forests to offer a good
landing zone for the soldiers. If the soldiers land directly in forests or villages they could
get hurt as well.

The group
To start a mission with the group already sitting in the helicopter, just enter following
syntax in the init line of the group leader. The group leader was named, Group1.

{_x moveincargo Heli1} foreach units Group1

The script
The script can be freely named by the user, so it looks as follows.

Now the user has the possibility to run the script with a waypoint, a trigger or even a
script, by using the Syntax this exec "script\heli.sqs". Another possibility without using
your own scripts, is to use scripts which exist in the game already. To run this script just
use the following syntax:

[GroupName,HeliName] exec "para.sqs"

124

_aunits = units Gruppe1;
_i = 0;
_j = count _aunits;

#Here
(_aunits select _i) action ["EJECT", Heli1] ;
unAssignVehicle (_aunits select _i) ;
_i=_i+1;
~1
?_j>_i : goto "Here"
exit;

6.1 - The Paratroopers

This system is quite useful if someone wants to allocate tactical signs to several units on
the battlefield or display the location himself or of another unit.

To enable this, a script has to be used which needs to be defined in the Init.sqs or the init
line of the player unit. That’ll make the script run right when the mission begins. This
script doesn’t only place a marker on the position of the unit, it will check whether the
respective unit is still alive or not. If the unit dies the marker gets deleted automatically.

Example 1:

Example 2:
This one can be realized by using the If-Then-Else-Syntax. Actually the following syntax
needs to be written in one line, but because this book is not wide enough it will be shown
in several lines. The following script is not as long as the one above, so one can enter
everything in one command line.

Explanation:
(If) Soldat1 is still alive (Then) set S1-Symbol on Soldat1 or (Else) delete S1-Symbol
and exit script (Exit).

Note:
A further beloved GPS-variant, which will not be explained here, is to create the marker
for the respective unit with a script and paste it onto that one. But he who will work
carefully through the guide, will be able to create those kinds of scripts by himself.

125

C
h

ap
ter 6

"S1-Symbol" setMarkerText Name Soldat1;

#START
; Checking whether Sold 1 is still alive, if not script will go to the Label END
? (!(alive Soldat1)) : goto "END";
;Set Marker

#MARKER
"S1-Symbol" setMarkerPos getPos Soldat1;
~1
;Script jumps back to Label Start
goto "START";

#END
deleteMarker "S1-Symbol";
exit;

#Start
If(alive Soldat1)Then{"S1-Symbol" setMarkerPos getPos Soldat1}
Else{"S1-Symbol" setMarkerType "Empty";exit};
goto “Start” ;

6.2 - The GPS-System

The action menu is the one which is located in the right corner at the bottom of the
screen. It's possible to add new entries or even delete them later if they are no longer
needed. One can add another entry by using following syntax:

ID = Player addAction ["Own Entry", "scriptName.sqs"]

To delete an entry use this Syntax:

Player removeAction ID

If one wants to delete an entry, the respective name has to be used which has been
defined with ID. If one wants to get an entry while a unit is sitting in a vehicle, the vehicle
name has to be defined as well:

ID = Vehicle addAction ["Own Entry", "scriptName.sqs"]

Trigger example:
A trigger needs be placed on the map first, then it has to be connected with the player
character, so that only this unit can execute the trigger. The following settings are needed:

Activation: Repeatedly
Axis a/b: 5
On Activation: ID = Player addAction ["Own Entry", "script.sqs"]
On Deactivation: Player removeAction ID

One can test this trigger now by running in and out of that area. The result should be that
the entry will appear and disappear again when leaving the area.

By using the action menu entries it’s furthermore possible to simulate a backpack, trouser
pockets or similar stuff. The following part will introduce the backpack feature which
explains the possibilities by using those entries. The example is currently working fine for
single player missions only.

The player character has to be placed on the map. The following syntax is needed in the initline:

RID = Player addAction ["Open Backpack", "backpack\backpack.sqs"]

Now one has to create a sub-folder called Backpack into the missions folder. Please make
sure that all files in the missions folder, are written with small letters!

Now put all the scripts, which are needed for all the different actions, into the backpack
folder. The following example displays four different scripts.

backpack.sqs firstaid.sqs

save.sqs close.sqs

126

6.3 - The Action Menu Entry

6.4 - The Backpack

Backpack.sqs
In the first step, the entry - Open Backpack - will be removed. The other entries will be
added in the next step. The special thing here is that the first aid pack can only be used
three more times. To make sure that the correct entry will appear every time a first aid kit
was used, a variable will be set on true each time. The game remembers the last time the
script was called. If the player has already used the first aid kit 3 times (see: ?
bandage3:goto "close"), the label bandage3 is set set on true. That makes the script
go on to the label #Close and ends the script by executing the script close.sqs.

A further exception for this script are the sounds which have been given for each respective
action. See: playSound "OpenBackpack". Those sounds are not quite important, but if
one wants to use them anyway, they need to be defined in the Description.ext.

To make it more realistic, it's possible to add a second feature which would allocate a
special animation to the player character. The next script, called FirstAid.sqs shall serve
as example in this case. The character will kneel on the ground while healing himself.

Attention! Those four scripts are all encapsulated with each other!

127

C
h

ap
ter 6

; Entry will be removed
Player removeAction RID
playSound "OpenBackpack"

; Entrys will be added
RIID = Player addAction ["- Save", "backpack\save.sqs"];

#Bandage
? verband3 : goto "Close";
? verband2 : goto "Bandage3";
? verband1 : goto "Bandage2";

#Bandage1
RIIID = Player addAction ["- First aid (3)", "backpack\firstaid.sqs"];
goto"Close";

#Bandage2
RIIID = Player addAction ["- First aid (2)", "backpack\firstaid.sqs"];
goto"Close";

#Bandage3
RIIID = Player addAction ["- First aid (1)", "backpack\firstaid.sqs"];

#Close
RIIIID = Player addAction ["- Close Backpack", "backpack\close.sqs"];
exit;

Firstaid.sqs
One can see here that the script is checking if, and how often, the mission has been saved.
If one would save the mission the first time, no variable was set on true. The script would
go to the next label called #Bandage1, then it would set the respective variable
#Bandage1 on true and go to the next label called #Heal where all sub-entries would be
deleted again. The player would receive the entry - Open Backpack - again in his action
menu and is now able to heal someone else.

If the game would be saved for the second time, the script would go to the label
#Bandage2 because the label #Bandage1 has already been set on true. If the game is
saved for the third time, the script would jump from the second script line to the label
called #Bandage3. Now #Bandage3 has been set on true as well, and the script would
go to exit and end the script if gets executed again (?bandage3 : exit).

128

? bandage3 : exit;
? bandage2 : goto "Bandage3";
? bandage1 : goto "Bandage2";

#Bandage1
bandage1=true;
goto "Heal";

#Bandage2
bandage2=true;
goto "Heal";

#Bandage3
bandage3=true;
goto "Heal";

#Heal
RID = Player addAction ["Open Backpack", "backpack\backpack.sqs"];
Player removeAction RIID;
Player removeAction RIIID;
Player removeAction RIIIID;
~0.2
Player playMove "AinvPknlMstpSlayWrflDnon_healed";
~1
Playsound "Sanipack";
~2
Player switchmove "AinvPknlMstpSlayWrflDnon_healed";
~5
Playsound "Pain";
~1
Player setDammage 0;
exit;

Save.sqs
The Save.sqs will save the current game. All entries will be deleted, that’s because the
script is running the Close.sqs from here. The current game status can be saved now.

Close.sqs
And the last file of course, which is needed if one is using the entry - Close Backpack -.

And now a short description of the given entry-names and the backpack is ready to be
filled up with its contents.

Name: RID
The name which is required to open the backpack.

RID = Player addAction ["Open Backpack", "backpack\backpack.sqs"]

Name: RIID
The name which is used for saving the game.

RIID = Player addAction ["- Save", "backpack\save.sqs"]

Name: RIIID
Was defined for all first aid entries, because only one is active.

RIIID = Player addAction ["- First aid (1)", "backpack\firstaid.sqs"]
RIIID = Player addAction ["- First aid (2)", "backpack\firstaid.sqs"]
RIIID = Player addAction ["- First aid (3)", "backpack\firstaid.sqs"]

Name: RIIIID
The name which has been defined for closing the backpack.

RIIIID = Player addAction ["- Close Backpack", "backpack\close.sqs"]

129

C
h

ap
ter 6

[] exec " backpack\close.sqs";
saveGame;
exit;

playsound "CloseBackpack";
Player removeAction RIID;
Player removeAction RIIID;
Player removeAction RIIIID;
RID = Player addAction ["Open Backpack","backpack\backpack.sqs"];
exit;

A mission which has almost the same storyline, might become boring quite soon and the
player may put it away or delete it. But if someone has created a mission which is full of
surprises, and enemy units are always attacking from different directions, there’s much
more tension in the mission and the chance to get played several times is much higher.
It isn’t a very fun way of playing Multiplayer missions if one will always have the
information of where the enemy will come from and which location has to be destroyed.
It also would be a better way of playing if the player character will get spawned at
different places and the target locations will change as well each time playing the mission.

The editor offers the user the radius of placement for each single unit. That alone makes
the mission more dynamic. But this option is actually meant for static objects only, which
have been defined before. The following script will be defined either in the init line of a
unit or in the init.sqs. It defines the starting positions when the mission begins.

Example: Dynamic start-points
The random command would get used here. The respective script can look like the
example below:

One wouldn’t need to investigate the respective XYZ-Position for every single place, one
only has to place several Heli-H onto the map and name them. At this point it’s possible
again to use the radius of placement to enable a higher dynamic to the mission.

The user now has a dynamic spawn point and he doesn’t know at what position he’ll get
spawned next time (P1,P2,P3). Because of the Heli-H radius definition, it’s no longer
possible to define the places where the targets will be spawned.

130

_Start = random 3;

? _Start < 1 : goto "P1";
? _Start < 2 : goto "P2";
? _Start < 3 : goto "P3";

#P1
Player setPos [x,y,z];
exit;

#P2
Player setPos [x,y,z];
exit;

#P3
Player setPos getPos HP1;
exit;

A random value of 3 has been used here. When the script
starts to run, a value will be created and will also be
checked to see how much it is. Then the script is going to
the next step.

The script would go to #P1 if the value is smaller then 1

The script would go to #P2 if the value is smaller then 2

The script would go to #P3 if the value is smaller then 3

One can define the positions behind the respective label
now, for example #P1.

An XYZ-position has been defined for #P1 and #P2 while
the player will be set onto an invisible Heli-H at #P3 which
is named HP1.

6.5 - Random Positions

Example: Using Start points with coordinates
The following example explains the way how to define an XYZ-position, which also uses
an additional variable radius of placement (_radius = 500).

The order of definitions has to be done as follows. The position _pos will be defined at first
by using [0,0,0], then the radius has to be defined next, the random value 3 will be
defined for _start. The script is checking how much the value is and will jump to its
respective position. The mark _pos will get one of the three XYZ-values allocated
(_pos=[X,Y,Z]), which has to been chosen and defined before.

Now _pos has a fixed XYZ-position and will get an additional radius allocated around this
position (_radius=500). Now this radius will be the area where the player character will
be spawned each time when a mission begins.

One can imagine it on a map. The green markers are the possible starting positions for the
unit or the player.

131

C
h

ap
ter 6

_pos = [0,0,0] ;
_radius = 500;
_start = random 3;

? _start < 1 : _pos = [X,Y,Z];
? _start < 2 : _pos = [X,Y,Z];
? _start < 3 : _pos = [X,Y,Z];

;This array actually has to be defined in one single line, but this is not possible here:
_pos = [(_pos select 0) + _radius/2 - random _radius, (_pos select 1) + _radius/2

- random _radius, _pos select 2];

Player setPos _pos;
exit;

The mapclick function offers a lot of new possibilities to the user, as one can see in the
subsection "The Artillery" in this chapter. But the artillery script is only one of many
possibilities using the mapclick. The following example is explaining the controlling of
groups, calling an air-strike, controlling of supply movements and lots more things. This
example is to be used for single player missions only.

The following example will explain how to control an AI-group named Alpha1 on the
map, by using the radio menu. The target position has to be defined by mapclick first,
and a marker named AMoveP will appear right on this position. At the same time the
leader of the unit will get the order to move to position AmoveP, and agrees with an
added "Roger" sound which has to be defined in the Description.ext.

This group can now be marked and tracked on the map by using the GPS System, which
is explained in Chapter 6.2 - The GPS-System. The tracked marker shall disappear again
at position AMoveP and shall appear again only by using the next mapclick. To do this
there will be defined a “waiting position” for the marker at position [0,0] which is defined
in the end of the script.

Group Alpha 1:
Name: Alpha1
Initline: Alpha1=group this
Size of the Group: Random

Radio trigger:
Aktivierung: Radio Alpha

Repeatdetly
Axis a/b: 0
Text: 0-0-1 Alpha 1
On Activation [] exec “skripts\alpha.sqs"

Marker:
Name: AmoveP
Text: Alpha 1 Movepoint
Symbol: Dot
Axis a/b: 1

132

6.6 - The Mapclick

Alpha.sqs
The following things will happen when this script gets executed: The variable alphaclick
will bet set on true and a text line will appear on the screen which asks the player to click
on the map. ArmA notes the definition at onMapSingleClick and the script will break at
@!alphaclick until the player has clicked on the map so that all commands after
OnMapSingleClick which are defined between the quotes have been executed . In the
next step, the variable alphaclick will get set back on false again.

The screen text will be deleted again and a sound file named "Roger" will be played. The
marker AmoveP will beam to a non visible position after a break of 20 seconds until the
next click will be done by the user.

133

C
h

ap
ter 6

alphaclick=true;
titleText ["Click on the map!","plain down"];

;This array actually has to be defined in one single line, but this is not possible here:
onMapSingleClick "Leader Alpha1 move _pos;

alphaclick=false; ""AMoveP"" setMarkerPos _pos";

@!alphaclick;
onMapSingleClick "";
titleText ["", "plain down"];
~1
playSound "Roger";
~20
"AMoveP" setMarkerPos [0,0] ;
exit;

134

The artillery is a very special feature in a mission. The player has the possibility to allocate
a target to the artillery by clicking on the map or the AI can call the player for artillery
support against a spotted enemy unit. The special thing about this artillery is that these
guns can really exist on the map, but this feature is actually not important to the artillery
script. If the guns are visible it’s quite interesting to watch them lining up into the fire
direction and firing.

This feature is unfortunately not possible without a little script work, which is luckily not
as difficult to realize as it seems on the first view. First it's needed to adjust some things
in the editor and create a subfolder in the missions folder which is called Artillery (make
sure that it’s written small).

Using with players:
The player should have the possibility to call the artillery by using the radio and allocate
them a target by clicking on the map. While the firing process is running, a marker called
Firepoint has to appear on the map and shall disappear right when the job is done.

Radio trigger:

Activation: Radio Alpha
Repeatedly

Axis a/b: 0
Text: 0-0-1 Artillery
On Activation: [] exec “artillery\setfire.sqs"

Marker:

Name: Firepoint
Symbol: Destroy
Axis a/b: 1

Invisible Heli H:

Name: ATarget
Position: Somewhere on the map

The guns:
This example has been defined with 6 guns with the gun type M119 of the BLUEFOR
Side. Those guns have to be set on the map and renamed to:

Names: W1, W2, W3, W4, W5, W6

Another type of gun wouldn’t work with this example! Explanation will follow.

6.7 - The Artillery

135

C
h

ap
ter 6

Setfire.sqs
The following script will be executed by using the radio trigger. The variable setfire will
be set on true and a screen text (titleText) appears which asks the player to click on the
map to define the target position. The definition of the mapclick will get started in the
next line of the script and breaks again at the position @!setfire. The script is now waiting
for the player to click on the map.

An invisible marker of the type Heli-H which is named ATarget, will be moved to the
position (_pos) on the map. The variable setfire will be set back on false again which
makes the condition !setfire (not setfire) complete. Now the script can go on.

The marker Firepoint will be moved onto the position of the Heli-H (ATarget) and the
onMapSingleClick will be deactivated again. In the next step the script ari.sqs will be
called. The screen text, which asks the player to click on the map, disappears again.

Ari.sqs
A radio sound will be played after this script is activated through the mapclick script. This
sound has a length of 10 seconds and needs to be defined in the Description.ext first. The

setfire=true;
titleText ["Click on the map to set your firedirection","plain down"];
onMapSingleClick "ATarget setPos _pos; setfire=false";

@!setfire;
"Firepoint" setMarkerPos getPos ATarget;
onMapSingleClick "";
[] exec "artillery\ari.sqs";
titleText ["", "plain down"];
~15
"Firepoint" setMarkerPos [0,0] ;
exit;

playSound "Firedirection";
~10
;+ + + Fire + + +
[W1,ATarget] exec "artillery\fire.sqs"
[W2,ATarget] exec "artillery\fire.sqs"
[W3,ATarget] exec "artillery\fire.sqs"
[W4,ATarget] exec "artillery\fire.sqs"
[W5,ATarget] exec "artillery\fire.sqs"
[W6,ATarget] exec "artillery\fire.sqs"
exit

script fire.sqs will get executed after a delay of
10 seconds (~10) by the respective guns and
the ATarget. This example shows only one
round.

If one wants to fire more than one round, the
part fire including the respective delay needs
to be copied and pasted between the last
script call (W6) and exit. The guns will fire
again after a small reloading break.

136

Fire.sqs
The artillery guns are lining up and firing at the position which has been defined by
clicking the map, after this script has been activated in the Ari.sqs (Gun and ATarget
[W1, ATarget]).

The first object of the Array (W1) will be used with the local variable _K and the second
one (ATarget) with the local variable _Z. The local variable _X receives the X-position of
ATarget (_Z) and the local variable _Y is receiving the Y_value from ATarget.

By the order _K doWatch [_X,_Y,5000] the script is telling to W1 (_K) that it has to watch
to ATarget and in height of 5000 metres. After a delay of 5 seconds (~5) both options W1
and _K fire "M119" are getting the order to fire. After a short while the grenades will
impact in the predefined random area _X+((random 80)-40) and _Y = _Y+((random 80)-
40). The random area is variable of course.

With the order _H say "Ari", a sound of an incoming shell will be played. This sound has
to be defined in the Description.ext of course. But this sound will be audible only in a
close area near to the impact point.

_K = _this select 0;
_Z = _this select 1;
_X = getPos _Z select 0;
_Y = getPos _Z select 1;
_K doWatch [_X,_Y,5000] ;
_A =_K Ammo "M119";
~5
_K fire "M119";
@ _A > _K Ammo "M119";
~2
_N = nearestObject [_K,"HeatM119"];
_X = _X+((random 80)-40) ;
_Y = _Y+((random 80)-40) ;
_H = "HeliHEmpty" createVehicle [_X,_Y] ;
~1
_H say "Ari";
~1
_N setPos [_X,_Y,0];
"SH_125_HE" createVehicle [_X,_Y,0] ;
deleteVehicle _H;
exit

137

This example works with the M119 gun only, because it has been defined that way in the
script. If one wants to use a different gun, the gun class (here: M119)and the respective
ammunition (here: HeatM119) has to be defined in the script.

The different classes of the available guns are listed in Chapter 3.2 – The weapon class
names.

Using with enemys:
The player or even friendly units can be attacked by enemy artillery fire in a predefined
trigger area when they’ve been spotted by the enemy. The way to do this is similar to the
one just explained. The only different is that the needed scripts are now to be saved in the
subfolder called enemy Artillery and a setfire.sqs is not needed as well. A marker which
defines the fire zone and a Heli H is not needed.

Variant 1:
One doesn’t have to use eastern Artillery but needs to place a trigger on the map which
contains the following settings:

Trigger:

Activation: WEST
Repeatedly
Detected by East

Axis a/b: 2000 (defines the area)
On Activation: [thisList] exec “enemyArty\ari.sqs"

The script called ari.sqs, which is located in the subfolder, needs some changes as
explained on the next page. The fire.sqs remains set up on the M119 gun!

All West units which are detected by east units will get attacked now by Artillery. The fact
that the West guns are firing wouldn’t get recognized by the player.

Variant 2:
If one wants to use special Eastern weapons, one has just to define it as shown below:

Trigger:

Activation: WEST
Repeatedly
Detected by East

Axis a/b: 2000 (defines the area!)
On Activation: [thisList] exec “enemyArty\ari.sqs"

C
h

ap
ter 6

138

The guns:
This examples has been defined with 4 guns with the eastern gun type D30. These need
to be placed on the map and renamed as follows:
Names: E1, E2, E3, E4

Ari.sqs
The special feature in this script is the result of the fixed trigger syntax in the trigger which
has defined as follows: [thislist] exec " ". That means that each West unit which has been
spotted by East units will receive the local variable _Target in the script. The effect of this is
that the target coordinates will be given automatically (West units). The respective gun and
_target would execute the fire.sqs script which is located in the subfolder enemy artillery.

Fire.sqs
That script only needs to be set up on the gun type D30. Therefore the class names of
the gun and the respective ammunition (D30 and HeatD30) needs to be allocated as
well. One also could use a tank instead of an artillery gun. Chapter 3.16 explains the way
how to get the weapon and ammunition types called.

_Target = _this select 0;
[E1,_Target] exec "enemyArty\fire.sqs";
[E2,_Target] exec "enemyArty\fire.sqs";
[E3,_Target] exec "enemyArty\fire.sqs";
[E4,_Target] exec "enemyArty\fire.sqs";
exit

_K = _this select 0;
_Z = _this select 1;
_X = getPos _Z select 0;
_Y = getPos _Z select 1;
_K doWatch [_X,_Y,5000];
_A =_K Ammo "D30";
~5
_K fire "D30";
@ _A > _K Ammo "D30";
~3
_N = nearestObject [_K,"HeatD30"];
_X = _X+((random 80)-40);
_Y = _Y+((random 80)-40);
_H = "HeliHEmpty" createVehicle [_X,_Y] ;
_H say "Ari";
~1
_N setPos [_X,_Y,0];
"SH_125_HE" createVehicle [_X,_Y,0];
deleteVehicle _H;
exit;

139

It’s quite important to save performance while playing multiplayer games, but that is also
necessary for single player missions. The more units that are moving on the map or have
to be displayed by the engine, the slower and more unreliable the mission becomes. This
script deletes killed units in a predefined area and in a predefined time from the map.
This executing syntax [2] exec "bodydelete.sqs" enables one to define the number of
bodies which will not be deleted from the map. One only has to enter a number which is
higher than 2. If the script is executed now, only two bodies will keep lying on the ground.

This script is not referring to any side. Its more up to the way how it was adjusted. The
following example explains a setting for East:

Trigger:

Activation: EAST
Once
Present

Axis a/b: 2000 (Define the area!)
On Activation: [2] exec "scripts\bodydelete.sqs"

If one wants all units, indifferent of which forces they belong to, to be deleted, one simply
has to select everyone out of the Activation menu. If only West units have to be deleted,
select West and so on. One can create a new subfolder in the missions folder called scripts.
This script is located in the subfolder scripts.

The special thing with this script is that the killed units will sink in the ground before they
will disappear completely. That function will work by using a special definition called:

(Gravedigger) action ["hidebody",_P]

To define it, one needs a unit which has to be named Gravedigger. It doesn't matter what
side this unit belongs to. The Gravedigger makes it possible that the killed units will sink
down into the ground before they get deleted. That unit needs to be placed far away
from the battlefield. The best choice would be another island if available, to avoid getting
killed by enemy forces. It’s quite important that the name is exactly as used in the script,
otherwise it won’t work. Vehicles will not sink into the ground, they will get deleted
directly from the map

Using with Soldiers:
This script has been set up on the type class men (_T="men"). It’ll delete only vehicles
which are defined as the respective type class. If one would define ground so all type
classes which belong to this ground will be deleted. All vehicles which belong to the type
class ground will be deleted from the map when they’ve been killed. Because aircraft's
and ships are the only types of vehicles which are not moving on the ground, all destroyed
or killed vehicles/units which belongs to this type will be deleted from the map.

C
h

ap
ter 6

6.8 - Deleting killed units and destroyed vehicles

The needed script called "bodydelete.sqs" looks like:

Sometimes it might be necessary to suppress the gaming speed. That’s useful if one
doesn’t want the player to be able to speed up the game. The reason is that some
missions have a special story line which needs to be seen and understood completely.
Another reason is that some missions contain huge numbers of script’s and speeding up
the game could cause errors in the scripts.

One single command isn’t enough to fix that problem in the editor, so a small script would
be the best choice and even the easiest way:

140

? !(local server):exit;

_W=_this select 0;
_L=[]+thisList;
_A=[];
_G=[];
_T="Man";

{ if (_T countType [_x] == 1) then {_G=_G+[_x]} } foreach _L;

#Again
{ if (not alive _x) then {_A=_A+[_x]} } forEach _G;
_G=_G-_A;
? count _A > _W :_P=_A select 0;_A=_A-[_P] ;
(Gravedigger) action ["Hidebody",_P] ;
~10
deleteVehicle _P;
? count _A == _W and count _G == 0 :exit;
goto "Again"

;Suppressing gaming speed

#Check
? not alive Player : exit;
setAccTime 1.0;
~0.1
goto "Check"

6.9 - Suppressing gaming speed constantly

This section will present a small but fine feature which isn’t actually very realistic but shall
demonstrate the possibilities of ArmA. The Bullet Mode enables the player to switch to
slow motion while the game is running. That enables one to get some great screenshots.
In this example the Bullet Mode has been added to the Action menu and was realized by
using two scripts. That feature is usable in the single player mission only, and quite
unnecessary in multiplayer missions.

The player needs an Action menu entry first:

ID=Player addAction ["Bullet Mode ON", "Bulleton.sqs"];

This entry is needed to run the bullet Mode . The respective script looks like this:

Bulleton.sqs

The entry Bullet-Mode ON will be removed out of the Action menu and the new entry
Bullet-Mode OFF will be added. The game speed will be displayed in slow-motion now
until the player deactivates the Bullet Mode by clicking Bullet-Mode OFF again. The
following script works as the one above only reversed.

Bulletoff.sqs

It would be a nice feature if one would add a music track which would get played if the
mode has been activated and stopped again and if the mode gets deactivated again.

141

C
h

ap
ter 6

;Entry will be removed
Player removeAction ID;

;Entry will be added
IID = Player addAction ["Bullet-Mode OFF ", "bulletoff.sqs"];

;Slow motion will be set
setAccTime 0.0900;
exit;

;Entry will be removed
Player removeAction IID;

;Entry will be added
ID = Player addAction ["Bullet-Mode ON ", "bulleton.sqs"];

;Slow motion will be revoked
setAccTime 1.0;
exit;

6.10 - The Bullet Mode

If one wants to add a special feature to get enemy units spotted by friendly AI units to
make them displayed with a blinking marker on the map (maybe to allocate Artillery fire
or send other units to this position), that can be realized as shown in the following
example. This script is executable in MP missions for the game server only. To do this, the
script needs the additional line ?(!(local server)):exit.

The user has to place a marker and a trigger on the map. The trigger will define the
respective area. For that function, adjust the options as follows:

Trigger:

Activation: EAST
Detected by WEST
Repetedly

Axis a/b: 5000
On Activation: thisList exec "scripts\signal.sqs"

Marker:

Name: Target1
Color: Red
Axis a/b: 1
Symbol: Destroy

The needed script looks like the following:

142

_Target = _this select 0;
signalcounter = 0;

"Target1" setMarkerPos getPos _ Target;
"Target1" setMarkerType "Destroy";

#Start
? (signalcounter>=10) OR not alive _Target : goto "End";
signalcounter = signalcounter+1;
~0.8
"Target1" setMarkerColor "ColorRed";
~0.8
"Target1" setMarkerColor "ColorBlack";
goto "Start"

#End
~1
signalcounter = 0;
"Target1" setMarkerType "Empty";
"Target1" setMarkerColor "ColorBlack";
exit;

6.11 - A script to track down enemy units

143

Airstrikes are always a tactical advantage. This is why an example will be shown here of
how to create an Airstrike. But note that this version of the script needs to get adjusted
to your own mission. That means that one needs to test the Airstrike in the respective
mission area and adjusts the altitude of the aircraft or the time until the bomb will be
dropped. The hits will become more and more accurate.

The Airstrike isn’t usable in Multiplayer games unfortunately, because the bomb used by
the Harrier would make the game crash. To add the Airstrike into the mission, one needs
to place following objects on the map

Invisible Heli-H:

Empty/Objets: H (invisible)
Name: ASTarget

Radio trigger:

Activation: Radio Alpha
Text: 0-0-1 AIRSTRIKE
Axis a/b: 0
On Activation: [] exec "airstrike.sqs"

Marker:

Name: Firedirection
Farbe: rot
Symbol: Destroy
Axis a/b: 1

The player has to click on the map when radio Alpha has been activated. AStarget and the
Marker Fire direction will be set right on the position where the player clicked on the map.
The game will generate an Aircraft including Pilot, which is approaching the target. The
pilot will get the bomb drop command when he reaches a predefined distance to the
target and would drop the bomb. The aircraft is flying away out of the players view and
would get deleted only a few seconds later.

C
h

ap
ter 6

6.12 - The Air Strike

144

Airstrike.sqs
The Logic and the marker are have to be placed somewhere on the border of the map to
make them invisible to the player. Once the job is done the marker and the game logic will
be moved back onto this position. You only need to add this script below and can get
started.

setfire=true;
titleText ["Click on the map to set your firedirection","plain down"];
onMapSingleClick "ASTarget setPos _pos; setfire=false";

@!setfire;
"Firedirection" setMarkerPos getPos ASTarget;
playSound "Firedirection";
onMapSingleClick "";
titleText ["", "plain down"];

;=========DEFINE=======================
_dropPosition = getPos ASTarget;
~0.5
_dropPosX = _dropPosition select 0;
_dropPosY = _dropPosition select 1;
_dropPosZ = _dropPosition select 2;
~0.1
_planespawnpos = [_dropPosX + 3000, _dropPosY, _dropPosZ + 1000];
_pilotspawnpos = [_dropPosX + 3000, _dropPosY, _dropPosZ + 1000];

;=========CREATE=======================
_PlaneG = createGroup WEST;
_plane = createVehicle ["AV8B",_planespawnpos,[], 0, "FLY"];
_plane setpos [(getPos _plane select 0),(getPos _plane select 1),900] ;
_pilot = "SoldierWPilot" createUnit [getMarkerPos "Firedirection", _PlaneG, "P1=this"];

_Plane setVelocity [100,0,0] ;
~0.4
P1 moveinDriver _plane;
P1 setDamage 0;
P1 action ["gear_up", vehicle P1] ;
_plane flyinHeight 100;
_plane setSpeedMode "full";

#CHECK
P1 doMove getPos ASTarget;
P1 doTarget ASTarget;
P1 doWatch ASTarget;
? (_plane distance ASTarget) < 1500 : goto "DROP"
goto "CHECK"

145

The accuracy will be better or even worse if the green marked labels #Drop and #Check
will be adjusted, but this is also up to the landscape as in reality.

The pilot will get the order to fly away when he has dropped his bomb. This is needed to
delete the aircraft out of the players view. The sound would stop immediately if the
aircraft was deleted right when the bomb has been dropped, and that would take away
any realism in the mission. A sound file called playSound "Firedirection" has been
started at the beginning of the script. That sound file needs to be defined in the
Description.ext.

C
h

ap
ter 6

;=========FIRE=======================

#DROP
_i = 0
_plane FlyInHeight 100;
_plane setPos [(getPos _plane select 0),(getPos _plane select 1),100] ;
~13

#FIRE
_i=_i+1
_plane fire "BombLauncher";
~0.2
? _i <= 6 : goto "FIRE"

;=========FLY AWAY=======================

ASTarget setpos [0,0,0];
"Firedirection" setMarkerPos [0,0];
_plane setSpeedMode “Full”
~4
_plane flyInHeight 300;
P1 doMove getPos ASTarget;

#CHECK2
_plane setDamage 0;
P1 setDamage 0;
? (_plane distance Player) > 2500 : goto "END";
goto "CHECK2"

;=========DELETE========================

#END
deletevehicle _plane;
deleteGroup _PlaneG
deletevehicle P1;
exit

Chapter 7
- Multiplayer -

This chapter explains the basics of multiplayer missions. After working with this chapter,
you will be able to create and edit your own multiplayer missions.

7.1 The Multiplayer Mission 147
7.2 The Respawn Points 147
7.3 Flexible Respawn Points 148
7.4 The MP-Description.ext 149
7.5 The Different Ways to Respawn 150
7.6 The Deathmatch 150
7.7 Defining the Multiplayer Area 151
7.8 The Class Header 152
7.9 The Respawn Dialog 152
7.10 The Vehicle Respawn 153

146

AlexXx (Alexander Zanft)

147

C
h

ap
ter 7

The information about creating multiplayer missions could fill a whole separate book.
This chapter will explain the most important parts of multiplayer mission creation and
will allow you to create your own simple multiplayer missions. The information given here
can be used in more complex missions later on.

Units
To make sure that units which are placed on the map are playable later in the mission, one
has to select the option “playable” in the respective drop down menu of the unit menu
in the editor. If one wants specific units to only exist if they are controlled by a player, the
following command has to be added to the Description.ext: disableAI=1. Playable units
which are not in use will be deleted and they will be not replaced by AI units and are not visible.

Markers are the best way to define respawn points. Respawn markers have to be renamed
to match the side using the respawn point:

West: Respawn_west Resistance: Respawn_guerrila
East: Respawn_east Civilian: Respawn_civilian

If one wants to add more respawn points, a respective number has to be added behind
the name. I.e.:

Respawn_west_1, Respawn_west_2,...

One also has the possibility to use other object instead of markers. It's possible to use
Objects and Game Logics. The disadvantage of doing this is that the unit will be respawned
exactly in the place of the object or game logic, while the radius of the marker is adjustable
which means that the units can be respawned at any point within the marker radius.

7.1 - The Multiplayer Mission

7.2 - The Respawn Points

If one wants to create a mission which contains flexible respawn points, the user has
several possibilities. To explain the "how to", an execution of a mission target shall serve
as example.

Every mission begins the same way. The units are placed at some point on the map. Until
the first target has been destroyed, the respawn point will not move. If Target1 has been
destroyed, the respawn point moves to the position of Target1 and enables the player to
be respawned at the new position. If the mission contains several mission targets, the
respawn point will jump from target to target after the respective objective has been
destroyed or has been executed.

The player has several respawn possibilities. An example:

Respawn Marker

Name: Respawn_West
Axis a/b: 50/50

Trigger

Type: Once
Name: AreaOne
Axis a/b: 50
Activation: OPFOR

Not present
OnActivation: "Respawn_West" setMarkerPos getPos AreaOne

hint "Congratulation - Target one accomplished!"

In that example, a new trigger called “AreaOne” will be placed, which has to check
whether the zone is free of enemy units. If it's true, the marker called Respawn_West will
be moved right onto the position of the trigger called “AreaOne” and a screen text
appears which says: "Congratulation - Target one accomplished!"That shall serve as a
small example only. It's possible to have the marker moved to another position within
the target zone.

148

7.3- Flexible Respawn Points

One can define the basic settings in the Description.ext. For example, the type and
countdown to the respawn. The following components are needed:

respawn=3; - The kind of respawn

respawnDelay=6; - The countdown until the unit will respawn

respawnVehicle=3; - The kind of the vehicle respawn

respawnVehicleDelay=10; - The countdown until the vehicle will respawn

disabledAI=1; - Units which have been defined as playable will not
be present as AI units in the game

AIkills=1; - The score of the AI units will be counted as well.

The following example shows the most important parts which need to be defined in the
Description.ext.

Description.ext

149

respawn=3;
respawnDelay=6;
respawnVehicle=3;
respawnVehicleDelay=10;

disabledAI=0;
AIkills=1;
respawnDialog = false;

class Header
{

gameType = CTF;
minPlayers = 2;
maxPlayers = 10;

};

titleParam1 = "Time limit:";
valuesParam1[] = {10000, 300, 600, 900, 1200, 1500, 1800, 2100, 3600, 7200};
defValueParam1 = 1800;
textsParam1[] = {"Unlimited", "5 min", "10 min", "15 min", "20 min", "25 min",

"30 min", "35 min", "60 min", "120 min", };
titleParam2 = "Score to win:";
valuesParam2[] = {10000, 5, 7, 10, 15, 20, 25, 30};
defValueParam2 = 5;
textsParam2[] = {"Unlimited", 5, 7, 10, 15, 20, 25, 30};

7.4 - The MP-Description.ext

C
h

ap
ter 7

150

There´re several possibilities for respawning once the player has been killed. Those
possibilities will be defined in the Description.ext when the mission is created. That is
meant for vehicles and for units as well. But it doesn't make much sense to respawn a
destroyed vehicle back into the game as seagull. The vehicle respawn is more accurately
explained in Chapter 7.10 - The Vehicle Respawn.

The ways to respawn:

0 or "None" - No Respawn
1 or "Bird" - Respawn as Seagull
2 or "Instant" - Respawn right on the position where one has been killed
3 or "Base" - Marker respawn (Respawn_west,…)
4 or "Group" - Group based respawn (If no more friendly AI units

are left, then respawn as seagull)
5 or "Side" - Side based respawn (If no more friendly AI units

are left, then respawn as seagull)

Vehicles can only spawn again with the values 0, 2 and 3.

If one wants to create a deathmatch mission which shall be playable by only one or more
players or even against the AI, it's necessary to turn units on the same side against each
other.

Variant 1
The “Setfriend-order“ could be a possibility:

East setFriend [East,0.1]

If there are several sides, all of them needs to become enemies of each other:

Variant 2
This syntax becomes makes units enemies of each other, indifferent of which side they
belong to.

this addRating ((- rating this) - 100000)

Units which haven't got this entry will not be shot by their own side.

Note!
While creating deathmatch mission with AI units, it's necessary to allocate two waypoints
as a minimum, which have to cover a wide enough range to make sure that those units
will move throughout the playing field.

7.5 - The Different Ways To Respawn

7.7 - The Deathmatch

Because the island is so large (it's 400 square kilometers), its necessary to enclose the
battlefield. This area can be visible on the map and in the landscape. The game already has
an integrated function available to make this possible. The function enables the creator
of the deathmatch mission to define his playing area. An object needs to be placed on the
map which should ideally be an invisible heli-pad. This object defines the center-point.
The syntax only needs to be entered in the init line of this object. The invisible heli-pad
can be found in units (F1) Empty/Objects.

This object needs to be placed in the middle of the gaming field. Then enter following
syntax into the init line:

AArreeaa11 == [[tthhiiss,,440000,,440000,,110000,,1100]] eexxeeccVVMM ""aarreeaa..ssqqff""
There is no need to script your own area.sqf. It´s already implemeted in the engine!

The object, in this case the heli-pad, is renamed to “Area1” automatically when the
missions begins. Some warning signs, which define the outer border of the battlefield,
will be generated automatically around the heli-pad. It's up to the definitions in the syntax
how large or small this size will be in the mission.

The sytnax explains itself as follows:

Name = [Center, X-Value, Y-Value, Number of Objects, Angle]

All Values are variable and freely definable. You can see an example about how it might
look in the images below:

One can save a lot of work by using this option. Otherwise all those objects need to be
placed on the map individually. It's now also possible to place dead-zones around the
battlefield to avoid players leaving the gaming area.

151

7.6 - Defining The Multiplayer Area

C
h

ap
ter 7

152

The class header is just a definition which needs to be defined in the description.ext. Its quite
necessary to define the class header because all the needed information will be displayed
here. It contains the minimum and maximum numbers of players and the mission type
which will be displayed to the player. It's also needed because it lets the player know the
required information which he or she may need to decide which server to join. The image
below shows two servers. The 1st one has a class header definition in its description.ext,
while the one below hasn’t got one, and the result can be seen in the mission-type.

GameType: The mission type will be defined here:

SC - Sector Control
DM - Deathmatch
CTF - Capture The Flag
COOP - Cooperation
TEAM - Team

MinPlayers: The minimum numbers of players

MaxPlayers: The maximum numbers of players

The example below shows the final edited class header in the Description.ext

The Respawn dialog is the dialog which will be displayed when the player is killed. It displays the
time which is remaining until the player can be respawned into the mission. One can activate or
deactivate this option by using following entry which has to be defined in the Description.ext:

respawnDialog = false;

If the dialog needs to be visible again, just change false to true.

class Header
{

gameType = CTF;
minPlayers = 2;
maxPlayers = 8;

};

7.8 - The Class Header

7.9 - The Respawn Dialog

153

The vehicle respawn can be used in two ways. The default way and the self-made way,
which I´d like to present in the next point. But first the default variant:

Every vehicle which shall respawn needs to get a special entry entered into its init-line.
This entry defines the individual configuration. The Syntax is as follows:

Vehicle1 respawnVehicle [Time,Number]

If one defines an individual respawn time-value to this vehicle, the game will ignore the
time that is defined in the Description.ext, and will use the time which was defined for
the vehicle directly. If the number for respawns in the init line was defined as 0, the
vehicle would respawn eternally.

The Description.ext needs some standardized lines which need to be defined to make it work:

respawnVehicle=3; - The type of respawn

respawnVehicleDelay=10; - The time which is left until the vehicle can
spawn again

The different kinds of respawn:
Vehicles only have 2 ways to respawn. These are to be respawned at “The place of
death(2)“ or to be respawned at a “Predefined location (3)“. To define the type of
resapawn, the following syntax needs to be written in the Description.ext:

respawnVehicle=3; - The kind of respawn

0 or "None" - No Respawn
2 or "Instant" - Respawn at the place of death
3 or "Base" - Marker respawn (respawn_west, …)

7.10 - The Vehicle Respawn

C
h

ap
ter 7

154

Chapter 8
- Camscripting -

This chapter contains some hard Stuff. Camera scripting is not as easy as it seems to be,
but the result can be compared with a Hollywood movie. Special features like intro´s,
outro´s and some sequences while running the mission are quite necessary tools to better
understand the characters and/or the storyline. Explaining everything about cam
scripting would fill a whole book, so I will only explain the most important things here so
that you will be able to create your own scenes.

8.1 Controlling the Camera 155
8.2 The Camera Coordinates 156
8.3 Creating A Camera 157
8.4 The First Scene 158
8.5 Patching the Camera On a Vehicle/Unit 160
8.6 Text and Blending Effects 161

Blacktiger (Simon Eichenberger)

155

It's actually quite simple to control the camera because only a few keys of the keyboard
are needed. The following explanation about the different function keys is assuming the
keys are still set at their defaults. Before the camera will get started, we should run it up
first. So place a unit or an object on the map and enter following syntax into the init line.

Name1 exec "camera.sqs" or this exec "camera.sqs"

The following list shows the most important keys to control the camera, locating objects
and defining positions. The option menu, especially the key configuration, offers many
more possibilities, but we are not interested in those right now. The controls which are
listed below will be enough to realize some good sequences.

Left Mouse button - Save current coordinates
Move mouse forward and backwards - Camera will do the same
Arrow key up - Move camera forward
Arrow key down - Move camera backwards
Arrow key left - Move camera left
Arrow key right - Move camera right
Numpad 4 - Rotate left
Numpad 6 - Rotate right
Numpad 8 - Rotate up
Numpad 2 - Rotate down
Numpad + - Zoom in
Numpad - - Zoom out
Picture up - Lift camera up
Picture down - Lower camera
L - Crosshair on/off
V - Camera off
Left Shift key - Camera speed
Ctrl - Select object (as shown below)

8.1 - Controlling the Camera

C
h

ap
ter 8

When the user finally finds the position he wants to use in the movie, he only needs to
press the left mouse button to save the current position (coordinates) in the RAM. This
feature has changed a lot since ArmA has been released. While the user only needed to
press the ctrl button in Operation Flashpoint to save each position in an automatically
created clipport.txt file, in ArmA the user has to go back to desktop by pressing Alt + Tab
to save each camera position in his camera script.

This script is just an editor text file which can be renamed as the user wants. Only the
intro and outro sequences need to be named a specific way (Intro.sqs, Outro.sqs). The
saved camera positions need to be saved in this file by press the right mouse button and
selecting paste out of the appearing context menu or just use the key combination Ctrl+V
The result looks like the example below:

The image above shows a newly created text block which has been saved in the RAM.
This script contains following details.

;=== 0:06:18
The time of day. Not really important, can be deleted or renamed

_camera camPrepareTarget [101880.56,-28486.36,1887.85]
Direction of view of the camera can also be defined as an object name as well.

_camera camPreparePos [9626.16,10062.31,2.00]
Camera position (X,Y,Z)

_camera camPrepareFOV 0.700
Camera zoom. So smaller the value so higher the zoom factor.

_camera camCommitPrepared 0
This value defines the time which the camera needs from one position to the next one,
defined in seconds. The position will change immediately if this value is still defined with 0.

@camCommitted _camera
The script will make a break here and wait until the camera has reached its next position.

156

;=== 0:06:18
_camera camPrepareTarget [101880.56,-28486.36,1887.85]
_camera camPreparePos [9626.16,10062.31,2.00]
_camera camPrepareFOV 0.691
_camera camCommitPrepared 0
@camCommitted _camera

8.2 - The Camera Coordinates

When all the camera positions have been saved and finally edited, then the script needs
a definition to create the camera and run the script. To do this just use the following
command:

_camera = "camera" camCreate [9626.16,10062.31,2.00]

The values, which are defined in _camera camPrepareTarget, can be used as X,Y,Z. There´s
also the possibility to use [0,0,0] if the camera shall get further-placed immediately.

_camera camPrepareTarget [101880.56,-28486.36,1887.85]
_camera camPreparePos [9626.16,10062.31,2.00]
_camera camPrepareFOV 0.691
_camera camCommitPrepared 0
@camCommitted _camera

The camera position and the command to run up the script have already been defined at
this point. Only the camera effects have yet to be defined.

_camera cameraEffect ["internal", "back"]

The following order makes the cinema border disappear, so that the movie will be
displayed in a full-screen format:

showcinemaborder false

When the work is done then we have the very first part of our newly created camera script.

So far we have the first part of our script, but it only would give us a picture which shows
a part in the landscape, and this is not quite spectacular. To get a movie with moving
camera drives and scenes, there are some more things needed

157

_camera = "camera" camCreate [9626.16,10062.31,6.00]
_camera camPrepareTarget [101880.56,-28486.36,1887.85]
_camera camPrepareFOV 0.700
_camera camCommitPrepared 0
@camCommitted _camera
_camera cameraEffect ["internal","back"]
showcinemaborder false

8.3 - Creating A Camera

C
h

ap
ter 8

158

We are using the same current camera position as created in Chapter 8.3, but we don’t
use the angle of view of the camera. In this example we’re about to use the name of a
unit called Aircraft1 in _camera camPrepareTarget [101880.56,-28486.36,1887.85]
instead of the [XYZ] coordinates, so just delete them and enter Aircraft1. Furthermore
the zoom needs to be adjusted, so we set it up to 600 to get quite close to our Harrier.

Now we only need another block of coordinates to tell the camera to move to move to this
new position. After this position has been defined it will be used in the script and finally
adjusted.

Intro.sqs

As one can see, two new lines have been added here:

titleCut [" ","BLACK IN"]; titleFadeOut 4

Blending black into the sequence with a time of 4 seconds.

Playmusic "Track1"

This syntax will run a music track to give some more atmosphere to the scene.

The camera is fixed now on Aircraft1 and needs 30 seconds to reach the next position.
Aircraft one is rolling and the camera starts to move to its next position. The camera is
zooming in, but the jet is much faster and will disappear in the sky.

;Intro sequenze

titleCut [" ", "BLACK IN"]; titleFadeOut 4
playMusic "Track1"

;Aircraft Position 1
_camera = "camera" camCreate [9626.16,10062.31,6.00]
_camera camPrepareTarget Aircraft1
_camera camPrepareFOV 0.600
_camera camCommitPrepared 0
@camCommitted _camera
_camera cameraEffect ["internal","back"]

showcinemaborder false

;Aircraft Position 2
_camera camPrepareTarget Aircraft1
_camera camPreparePos [9657.99,10121.22,1.04]
_camera camPrepareFOV 0.500
_camera camCommitPrepared 30
@camCommitted _camera

8.4 - The First Scene

159159

Aircraft Position 1:

Aircraft Position 2:

It’s possible to add much more effects to this scene, but the basics should be explained
well enough. The script only needs a command to be ended, so the lines below need to
added to the bottom of the script:

The scene is blending out slowly and the music is fading down as well. The camera will be
deleted after 6 seconds and the player will get the control back and can start to play. It's
quite important to make sure that the music track that is faded down will get faded up
again. If you forget to do this and want to use the music again later in the mission, it wont
be audible.

6 Fademusic 0

titleCut ["", "BLACK OUT"]; titleFadeOut 4
~6

player cameraEffect ["terminate","back"]
camDestroy _camera
~1

playMusic " "
0 fadeMusic 1
exit

C
h

ap
ter 8

One also has the possibility to hang the camera on a vehicle, so that the vehicle is
pursuing the object. Its possible to add the camera at any position of the vehicle, but the
vehicle needs to be generated first. In this example we are using a car which has been
named “Car”.

160

;Create Camera
_camera = "camera" camCreate [0,0,0]
_camera camSetTarget Car
_camera camSetPos [0,0,0]
_camera camSetFOV 0.700
_camera camCommit 0
@camCommitted _camera
_camera cameraEffect ["internal", "back"]

;Position of camera in/at/about the vehicle
_car = Car

;Position of camera (front/back/inside)
_dx = -6

;Position of camera (left/right/inside)
_dy = 0

;Highness of Camera (below/above/inside)
_dz = 2

#Loop
;The following two blocks actually have to be defined in one single line, but
;this is not possible here:

_camera camSetTarget [(10 * sin (getDir _car))+(getPos _ car select 0), 10*cos
(getDir _car)+(getPos _car select 1), (getPos _car select 2)]

_camera camSetPos [(getPos _ car select 0) + _dx * sin (getDir _car) - _dy * cos
(getDir _car), (getPos _car select 1) + _dx * cos (getDir _car) + _dy * sin
(getDir _car), (getPos _car select 2)+_dz]

_camera camSetFOV 0.900
_camera camCommit 0
@camCommitted _camera

;We set a condition to end the script. In this case: If our car, gets closer than 50
;metres to the unit (P1), so the scene will be ended.
?P1 distance Car < 50 : goto "End"
goto "Loop"

#End
P1 cameraEffect ["terminate", "back"]
camDestroy _camera
exit

8.5 - Patching The Camera On An Vehicle/Unit

161

One has the possibility to define several kinds of screen text. To do this, just use following
syntax:

titleCut ["Hello", "Black Out"]; titleFadeOut 4

or

titleText ["Test", "White In"]; titleFadeOut 4

The list below explains the possibilities individually:

Plain - Text appears in the middle of the screen

Plain Down - Text appears at the bottom of the screen

Black - Blending out from the screen image to black

Black Faded - Blending out from the screen image to black as well

Black In - Blending back from black to the screen image

Black Out - Blending screen image into black

White In - Blending from white to screen image

White Out - Blending screen image into white

Linebreak
To insert a line break into the text just use the code \n at the part of the text which has to
be broken. If one is using this code twice (\n\n), one will get an empty line and so on.

titleText ["Paraiso\nOne day later…", "Black In"]; titleFadeOut 6

The result can be seen in the image below:

8.6 - Text- And Blending Effects

C
h

ap
ter 8

Chapter 9
- Scripting -

This chapter will explain some of the scripting operations in more detail. This chapter will
allow you to better understand more of the scripts that are shown in this guide and even
allow you to be able to define some of your own small or large scripts.

9.1 The Variable 163
9.2 Logical Values 164
9.3 Logical Operators 165
9.4 The While-Do-Loop 166
9.5 The Counter 166
9.6 If-Then-Else 166
9.7 The Delay 167
9.8 Random 167
9.9 WaitUntil 167

162

Woody (Andreas Holzwarth)

163

A variable value is a changeable value. It can be a word or even a number depending on
its intended use. There are two possible variables, the global and the local variable. While
a global variable will work everywhere, a local one will work for a special thing only. Here
is an example with variables:

Heli1 flyInHeight 120

If a user is placing a unit on the map, the units needs to be named in a special way. MyHeli
for example. It's not possible to name a unit with a number (1234) only, but it's possible
to merge a name with a number. Heli1 for example.

Local Variable
A local variable can be recognized by its underline right in front of the variable. If the user
defines a script, this variable will work in this script only in a localized section. So its
possible to use this variable for several sections of the script without giving out more
variables (for example, using the same variable for one or several units).

In the current example, we are using a script which was defined in a way so that 3 units
called Name1, Name2 and Name3 have to execute an animation. But it might be that
there are some more units on the map which shall be called on by that script, so its
necessary to use a local variable. One has to define only one script and needs to use a
local variable for a huge number of units.

The names which have to be executed by the script need to be defined as an Array:

[Name1,Name2,Name3] exec "script.sqs"

If the script gets started, so every single soldier of the 3 units will get allocated the local
variable _man. Every single unit will get asked individually. The script would look like:

The unit with, the global name Name1 i.e., got the local variable _man allocated and will
execute the given command:

;Animation script

;Unit is getting local value allocated
_man = _this select 0

;Unit is executing animation
_man playMove "Animation";

;Script will exit
exit

9.1 - The Variable

C
h

ap
ter 9

164

Global Variables
Next to the local variables exists global variables. While a local variable will only work in
a special predefined section, a global variable will work for a much wider section, as the
name already implies. An example: If the user is renaming a unit so the name is a global
variable, the name can be used only one time. If one wants to rename another unit with
the same name, an error message will appear. The unit which has been named can be
now be called by scripts, triggers, and waypoints - it's global.

Fixed variables
Some values are already used by the game, these are:

Player - The Player
This - Unit or object
Time - Time of day in the game
_time - Local time
_x - An element out of an Array
_this - Local unit
Pi - 3,14…

Conditions of variables
It’s possible to allocate conditions or values to a variable. Its also possible to set them on
true or allocate them a text string.

Name1= true - Variable is receiving the value TRUE

Name1= 44 - Variable is receiving a value

Name1= "MyText" - Variable is receiving a text string

Name1= [Value1,Value2] - Variable is receiving a array value

Saving variables
It's also possible to save variables at any time to call the again later

saveVar "Variablenname"

A logical value is a special condition of a value. One can compare it with an on/off switch.
If a variable has been set on true, a predefined action will get started. If the same action
gets set back on false, this action will be ended. It's also possible to define true as 1 and
false as 0.

true - Will be executed when a condition has been executed

false - Will be executed when a condition has not been executed

9.2 - Logical values

165

The list below explains some of the generally known and important operators.

AND - A logical AND to combine two or more operations

OR - Logical OR enables a controlled selection of two or more variables

NOT - A logical NOT enables a controlled use of two or more variables

! - Can be used as NOT as well

? - IF

: - DANN

If - IF

Then - THEN

Else - ELSE

Exit - Stops the execution of a script

Do - Do (see While Do)

- Headline (Label) Note: Never set a semicolon behind a Label!

Goto - Goto

> - Bigger than

< - Smaller than

<= - Smaller or equal

>= - Bigger or equal

== - Equal

~ - Delay in seconds (~3)

; - Will be ignored by the script

@ - Pauses the script and waits until the condition which follows next,
has been executed

ForEach - For each unit. Example {_x reveal Player} foreach List Area1

ThisList - For each unit (Side) in a trigger area

Count - Gives the number of existing elements of an array back top the script

Random - Defines a random value

Case - Case
(ex.: case 1 : exit (translated: Is circumstance equal with value1 then exit)

Ceil - Rounding value up. (Ex: ceil 5.25 would be 6 / ceil -5.25 would be 5)

Floor - Rounding value down. (Ex: round 5.25would be 5/ round -5.55 would be 6)

Round - Rounding value up/down. (Ex: round 5.25 would be 5 / round 5.55
would be 6)

9.3 - Logical Operators

C
h

ap
ter 9

166

This loop is going on so long as a is bigger then b. A will always receive the value 1 until
it’s bigger then b, so that the loop can stop. The maximum value for Armed Assault is
currently at around 100.000.

While {a<b} do {a=a+1}

Translated: Add the value 1, so long a is smaller then b.

If one wants to use a counter in a script, the element value needs to be defined as 0 when
the script or the mission begins. The value 0 will get allocated to the variable counter.
Then the actual counter starts and always adds the value 1 to the local variable _counter
at any cycle. But this will run only so long as the variable _counter is >= (bigger equal) 10,
Then script will end its sequence..

_counter = 0;
#Start
? (_counter>=10) : exit
_counter = _counter+1;
goto “Start”;

This syntax means exactly what it is called: If-Then-Else. An example: IF condition has
been executed, THEN do this, or (ELSE) do this. Here is an example:

IF (a>b) THEN {c=1} ELSE {c=2}

An example: A marker has to be “patched“ onto a unit so long this unit is still alive. If the
unit will be killed, the script will exit.

If Soldier1 is still alive Then place S1-Symbol onto Soldier1, Or (Else) delete S1-Symbol
and leave the script (Exit)

#Start
~0.5
If(alive Soldat1)Then{"S1-Symbol" setMarkerPos getPos Soldat1}

Else{"S1-Symbol" setMarkerType "Empty";exit};
goto “Start”;

9.4 - The While-Do-Loop

9.5 - The Counter

9.6 - If-Then-Else

167

The delay (written as “~” without quotes) will only be used in SQS-Scripts, while Sleep will
be used in functions only. These orders will be defined as seconds. The script is counting
down the given value and breaks the execution until the value 0 has been reached. When
the count down has been finished the script will go on.

~300 - Script makes a break of 300 Seconds

~random 300 - Generates a random value and pauses the script break

sleep 300 - Is a function. “sleeps” 300 seconds

The order random enables one to generate a random value. It's possible to define a
random value with a variable. That could be such a script:

_start = random 4
? _start < 1 : goto "Start1";
? _start < 2 : goto "Start2";
? _start < 3 : goto "Start3";
? _start < 4 : goto "End";

A value, which has a maximum number of 4, has been generated randomly here and the
script is checking the respective value. The script is jumping now to the respective Label
which was defined with Start or End as shown above

That operator can be used another way as well, for example to place a unit at a random
position inside a building, or to define a value to a delay. The needed syntax could look
like this:

Name1 setPos (nearestBuilding this buildingPos random 10)

or the Delay:

~random Value

The command waitUntil can be used if a special function, condition, or action gets
paused. It's actually like the @ function. The function is waiting until this condition has
been executed.

_Wert = 0;
waitUntil {_Wert = _Wert +1; _Wert >= 100};

9.7 - The Delay

9.8 - Random

9.9 - Waituntil

C
h

ap
ter 9

168168

The contents of this Editing Guide will help you to make the work with the Armed Assault
Editor much easier. You do not need any knowledge of programming to create interesting
and fun missions for ArmA.

That’s true, without any knowledge in programming! Of course, it wouldn’t be bad if you
have had some experience working with the Operation Flashpoint Editor. It would be an
advantage but it's not necessary. This Guide will explain to you the parts of the editor
individually, and many examples will help you to understand the single operations. In
addition to this, the Armed Assault Editing Guide will show you the nearly unlimited
possibilities which are offered to you by the Editor.

After you've worked with this guide a few times, you’ll be able to create your own exciting
missions. The only thing you really need is creativity and a lot of ideas which you want to
realize. The possibility to create your own movies, which one can compare with
Hollywood movies, and further, the possibility to add your favorite sound files into the
missions will pull the player into the game.

Create dynamic missions with different weather, time of day and furthermore, different
mission targets. Units, objects or even the player himself can be located at a different
position every time a mission begins. All of these possibilities shouldn’t be a problem for
you anymore.

Now it's up to you and your ideas and your creativity to create new good missions. This
guide doesn’t contain a directing book, scenarios, or any other stories for your missions
- that’s all up to you. But with this guide, you have all you need to make your ideas come
true. If anything doesn’t work as you want it to, just relax, exit the editor and play some
missions, go on with your campaign or enter the multiplayer lobby to get new ideas for
your mission.

Armed Assault is set up as Operation Flashpoint's successor with its very own scripting
language. Here and there some changes were made and many new things were used in
ArmA, but the basic concept is still the same. The Editor still enables the user to keep an
organized overview, and the missions folder and their contents are still the same as well.
So read, try and edit your own missions with this Guide through the world of Armed-
Assault.

BI, Morphicon and Mr-Murray wish you good luck and much fun with the Editor.

© 2008 Sascha ”Mr-Murray” Hoffmann

169

The print version of the popular Editing Guide, written by Sascha “MrMurray“ Hoffmann,
will be released soon. It will be a hardcover book containing 335 pages, including over 200
subsections which have been separated in 11 chapters.

The contents of the Deluxe Edition are double that of this guide and also include
important additions to all the new stuff which is possible in ArmA, Queens Gambit and
the usage of dialogs.

An absolute must for every modding fan of Armed Assault whether a beginner or an
advanced mission editor!

Get more information on: www.mrmurray.de.vu

Contact: mrmurraybossmail.de
169

Available in your store soon only in Germany!

Armed Assault Editing Guide
Deluxe Edition

