
Document no:

XED-MAN-0001

Date: Issue: Page:

 2004-11-12 1 1 of 89

Office: Telephone: Email:

Massive Entertainment AB +46 (0)40 600 1000 info@massive.se

Box 4297

203 14 MALMÖ Fax:

Sweden +46 (0)40 600 1099

PROJECT
XED

TITLE
XED User Manual

 Name Function Date Signature

Prepared: Per Edman Mission Designer 25 Oct 2004

 Mattias Paulsson XEd Lead Programmer 26 Oct 2004

Checked: Mattias Paulsson XEd Lead Programmer 26 Oct 2004

 Robert Bare Community Manager 26 Oct 2004

Authorized: Martin Walfisz CEO

Distribution: All

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 2 of 89

SUMMARY

DOCUMENT CHANGE RECORD

Issue Date Paragraphs affected Change information

1 2004-10-28 All New document

Welcome to the XEd user manual. The first part, the "Quickstart", is a tutorial that lets you
create a fully working multiplayer mission in a matter of minutes. The second part is the "XED
manual", that explains all details of XEd and gives you hands-on tips and tricks from the level
designers of Ground Control II. This part of the manual also contains the script command
reference.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 3 of 89

TABLE OF CONTENTS

Your first multiplayer map...9

XED OVERVIEW ...13

The user interface ..13
Moving around..13
Orientation and coordinates..13
The menu bar ...13
The tool bar ..15
Other commands..16
Gestures...16
The status bar ..16

Modes ...16
World edit mode ...16
Texture edit mode...17
Instance edit mode ...17
Script edit mode ...17

Tools ...17
World edit tools...17
Texture edit tools ..19
Instance edit tools...19

WORLD EDITING..20

Landscapes and environments...20
Battleground ...20
Desert...21
Farmland ..21
Icevolcano ..21
Islands..22
Orange ...22

MissionStats...22
Initial options ..22
Player settings..23
Allowed and disallowed ..23
Victory conditions ...24

Heightmap creation and editing..24
Floodfill ...24
World Brush Options ..25
Paint to Height tool ...26
Set Height tool..26
Plus-Minus tool ...26
Ramp tool ...26

Fractal terrain generator..26

Occupancy grid and slope maps ..27
Inspect tool ...27
Show occupancy grid ...27

AI hints..27

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 4 of 89

Choke points ..28

Texturing and splatting ...28
Texture Edit tool ...28
Texture Erase tool ..29

Placing and editing instances...29
Script components..29
Instances dialog ...29
Additional options ...30
Agents ..31
Areas..31
Cameras...32
Props..32
Sounds ...32
Things ..33

2D Map ..33

Ruler..33

Wizard manager ...33
Skirmish Wizard ...33
Zone Wizard ...34

Tips, Tricks & Troubles ...34
Zones must be flat ..34
Don't delete zones with 2D map in "Zone" mode..34

THE BASICS OF SCRIPTING...35

Starting ...35
START ...35
SOUNDS & THINGS ..35
PLAYERS_CONNECTED ..35
ZONES...35
UNITS (or AGENTS) ..35
TRIGGERS...36
EVENTS...36

Multiplayer ..38

Single player...38

Cooperative games..39

Cutscenes and cameras ..40

Naming conventions..41

Tips, Tricks & Troubles ...41
The “Null” script ..41
Preparation is key...41
Names cannot have spaces ...41
Reference targets must exist ..42

SCRIPT REFERENCE...42

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 5 of 89

Introduction to Juice..42

Commands and parameters ..42

References..42

Context system ..43
Full CONTEXT ...43
PLAYER and TEAM ...44
TEAM only..44
No CONTEXT...44
Context Example ..45

Script command listing ...45
Common command attributes...45

General commands..46
DEBUG_DebugText ...46
WEATHER_SetWeatherEffect..46
GUI_HelpEnableWidget ...46
GUI_HelpDisableAll..46

SCRIPT commands..47
RANDOM_ActivateScript..47
SCRIPT_ActivateScript ..48
SCRIPT_AddSound..49
SCRIPT_RemoveSound...50
SCRIPT_EndMission..50
SCRIPT_EvaluationBranch ..50
SCRIPT_KillTriggers ..51
SCRIPT_RandomAddZone ..51
SCRIPT_SetGameOverTie...51
SCRIPT_SucceedMission ..51
SCRIPT_SlowMotion..51

TEAM commands...52
Common attribute ...52
TEAM_AddMinimapMarker...52
TEAM_RemoveMinimapMarker..52
TEAM_AddZone...52
TEAM_RemoveZone ..54
TEAM_ApRewardOrPenalty ...54
TEAM_CameraPositionTrackAgent ..54
TEAM_CameraShake...55
TEAM_CameraSpline...55
TEAM_ChangeSoundtrack...56
TEAM_ChangeZoneOwner ..56
TEAM_FadeToColor...56
TEAM_FlashPositionInMinimap..58
TEAM_ForceTopDownCamera ..58
TEAM_PlaySound ..58
TEAM_SaveCameraPosition ..58
TEAM_RestoreCameraPosition..58
TEAM_SetCameraOrientation ..58
TEAM_SetCameraPosition...59
TEAM_SetCameraWidescreen...59
TEAM_SetCameraView..59

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 6 of 89

User interface commands ...59
TEAM_ShowAutomaticMessageBox ..59
TEAM_ShowButtonMessageBox..59
TEAM_ShowTimedMessageBox ..59
TEAM_PurgeMessageQueue...60

PLAYER commands...60
Common attribute ...60
PLAYER_FreezeInput ..60
PLAYER_AIChangeDecisionTree ..60
PLAYER_AiChangeEngageSuccessProbability ...61
PLAYER_AiRemoveZone...61
PLAYER_MoveCameraToLZ..63
PLAYER_PlaySound ..63

Agent commands...63
Common attributes ...63
PLAYER_AddAgent..64
PLAYER_AIAddAgent ..64
GROUP_AgentGroup ...64
PLAYER_ChangeAgentsOwner ...64
AGENT_Die..65
AGENT_EnterBuilding..65
AGENT_ExitBuilding ..65
AGENT_EnterContainer ...66
AGENT_ExitContainer..66
AGENT_Heal..67
AGENT_Hurt ..67
AGENT_MoveTo ..67
AGENT_Remove..67
AGENT_SetFireBehaviour ...67
AGENT_SetMoveBehaviour ...67
AGENT_SecondaryMode, AGENT_SetEnabled, AGENT_SetIndestructable,
AGENT_AttackAgents, and AGENT_AttackArea..68

Campaign flags ..68
Common attribute ...68
DATA_SetIntCampaignFlag ...70
DATA_SetStrCampaignFlag...70
DATA_ChangeIntCampaignFlag ..70
DATA_RemoveCampaignFlag ...70

Objective commands...70
Common attributes ...70
OBJ_AddObjective_HumanObjective...71
OBJ_AddObjective_DefendArea ..71
OBJ_AddObjective_DefendUnit ...71
OBJ_AddObjective_SearchAndDestroy ...72
OBJ_AddObjective_Zone ...72
OBJ_AddObjective_Annihilate..72
OBJ_ChangeObjectiveImportance ...72
OBJ_ObjectiveCompleted ..72
OBJ_ObjectiveFailed..72
OBJ_RemoveObjective ..73

Thing commands ...73
THING_AddThing...73
THING_LookAtAgent..73
THING_LookAtCamera ..73

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 7 of 89

THING_LookAtThing ..73
THING_MoveTo ...74
THING_RemoveThing ..74
THING_SetAnimationState...74
THING_SetPlayerColor ..74

Triggers ..75
Trigger context ...75
Common attribute ...75
TRIGGER_AllPlayersReady ...75
TRIGGER_Timer ..75
TRIGGER_TriggerIsTriggered..76
TRIGGER_CampaignFlagNotSet ...76
TRIGGER_CampaignFlagSet...76
TRIGGER_ConditionBranch...76
TRIGGER_GameOver..78
TRIGGER_MessageBoxClosed ...78

Agent triggers ..78
Common attributes ...78
TRIGGER_AgentsEnterArea ..78
TRIGGER_AgentsLeaveArea...79
TRIGGER_AgentsEnterBuilding...79
TRIGGER_AgentsEnterContainer ..79
TRIGGER_AgentsExitBuilding ...79
TRIGGER_AgentsExitContainer...79
TRIGGER_AgentsHaveKilled ...79
TRIGGER_AgentsUnderAttack ..79
TRIGGER_AgentsWereKilled...79

Agent Type triggers ...80
Common attribute ...80
TRIGGER_AgentTypeEnterArea..80
TRIGGER_AgentTypeEnterBuilding...80
TRIGGER_AgentTypeExitBuilding ...80
TRIGGER_AgentTypeEnterContainer ..80
TRIGGER_AgentTypeExitContainer...81
TRIGGER_AgentTypeHaveKilled...81
TRIGGER_AgentTypeLeaveArea...81
TRIGGER_AgentTypeUnderAttack ..81
TRIGGER_AgentTypeWasKilled ..81

PLAYER triggers ..81
Common attributes ...81
TRIGGER_PlayerAction ...81
TRIGGER_PlayerConnected..82
TRIGGER_PlayerEnterArea ...83
TRIGGER_PlayerLeaveArea..84
TRIGGER_AnyOtherPlayerEnterArea ..84
TRIGGER_PlayerEnterBuilding..84
TRIGGER_PlayerExitBuilding ..84
TRIGGER_PlayerEnterContainer ...84
TRIGGER_PlayerExitContainer..84
TRIGGER_PlayerHaveKilled ..84
TRIGGER_PlayerUnderAttack ...85
TRIGGER_ZoneTakenByPlayer...85

TEAM triggers ..85
Common attributes ...85

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 8 of 89

TRIGGER_TeamEnterArea..85
TRIGGER_AnyOtherTeamEnterArea ...85
TRIGGER_NumberOfZonesTakenByTeam..85
TRIGGER_ZonesTakenByTeam ..86

Conditions ..87
CONDITION_IntCampaignFlagEquals ...88
CONDITION_StrCampaignFlagEquals...88
CONDITION_IntCampaignFlagNotEquals..88
CONDITION_StrCampaignFlagNotEquals ...88
CONDITION_IntCampaignFlagGreaterThan ..88
CONDITION_IntCampaignFlagLessThan...89
CONDITION_Timer ..89
CONDITION_IsAreaEmpty ...89
CONDITION_IsTriggered ...89

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 9 of 89

Part I: Quickstart

Your first multiplayer map
To create your first map, start XEd. Double-click the XEd icon on your desktop. The splash
screen will appear. When the Welcome to XEd! dialog has loaded, select the type of
Landscape type you would like to use, under “New Mission” at the bottom. Pick “Desert”, and
click “New”.

When the map has loaded, the sky will look odd. On the
Commands drop-down menu, click Select
Environment. Environments are connected to the
terrain type and desert only has two - one morning and
evening. Select “Morning” and click OK.
You should know how to move around. Holding down the right mouse button will allow you to
push and pull your way around the map, or W, A, S and D can also be used. Holding down
the ALT key will slow this movement by a factor of 10. Holding the right mouse button and the
CTRL key lets you look around in the world, while rolling the mouse wheel will raise and lower
the camera – this motion, too, can be slowed by holding down the ALT key as well.

We need to raise the whole terrain above water level. The easiest way to do this is Floodfill,
available under Commands. Water level is just below 19.5 meters, so type in 25 and click OK
to raise the ground above this.

Now that we have flat terrain, let us focus on the terrain tools
and brushes. Bring up the world brush options panel. These
values are used to control how world brushes function. Now
select the WorldPaintToHeightTool. Using this tool, terrain
can be raised to the Target Height if the terrain is lower, or
lowered if it is higher. The tool is useful to flatten large areas

to the same height, or to create several hills or mountains of the
same average height. Experiment with different brushes, pressures
and target heights to get the terrain you want.

It is often useful to detect and re-use a certain height already present in the
landscape, using WorldSetHeightTool. Clicking the ground with this tool will set the
current Target Height to the height underneath the mouse cursor. This tool is
essential when expanding a plateau, or when eroding mountains down to the
surrounding lowlands.

You will not always want to paint towards a set height. The WorldPlusMinusTool can both
raise and lower terrain relative to where you paint. Instead of using pressure, this brush tool
relies on the “Step” value in the options panel. Just holding down the left mouse button will
raise the terrain in the shape of your brush, while holding down the SHIFT key along with the
mouse button will lower it instead.

It is also possible to import heightmaps into XEd. Click File->Import Heightmap and browse
to the file to be imported. The files should be a 513 by 513 pixel grayscale Truevision Targa
(.TGA) file.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 10 of 89

Once you have created a terrain
you are satisfied with it is time to
make the map playable. Find

and press the MissionStats button.
This will bring up a Juice Editor for the
map settings. Here you can change the
amount of AP given to all players at the
start of the game, the defeat conditions
for the mission, what units to not allow
on the map and a lot of other things.
Double-click on myMissionType and set it to MULTIPLAYER. Then change
myAllowNoPresenceDefeat to TRUE. Once exported, this map will now be sorted as a
Multiplayer mission, and the last remaining player with units or Landing Zones will win. Also
fill out a name and a loading screen text for the mission.

Expand myPlayers and go through all eight players available on the map to make sure that
both TEAM_1 and TEAM_2 are listed, but no other team. Players may still change their team
in the lobby, but if a team is listed among the players in MissionStats, players will also be
able to choose that team in the lobby - even if that team has no landing zone. Now close the
MissionStats window.

Click ViewInstancesDialog to make the panel visible on your screen, and look at it.
Activate the InstancePlaceTool. The right tree lists all placed instances, including
areas and camera positions. The checkboxes determine what objects should be

visible in the world. Selecting an instance type on the left hand side will allow you to create
instances of that type in the world. Double-clicking items in the right tree will allow you to edit
existing instances. Now, expand the Things branch and then the GlobalPropTypes branch.
Find the type LZ_thing and select it.

Select the InstancePlaceTool. Now find two
reasonably flat areas on your map where you
want dropships to land. Using the
InstancePlaceTool, click on the ground where

you want the LZ_thing. This flat white marker is a thing; an object that has no collision, but
which can be animated. When used to mark a Landing Zone, the marker will change color to
reflect whether the zone is neutral, friendly or hostile.

Notice that when you placed the LZ_thing, a new item appeared on the Instances list, under
the Things branch. Expand this branch to see the name of the new Thing, which is most likely
LZ_thing__1. Change this name by selecting it and clicking the Rename button at the bottom
of the Instances panel. Do this now, and set the new name to LZ_1_thing.

Click the AreaPlaceTool. It works a little differently from the InstancePlaceTool in
that it only places Areas, and these require a radius. Therefore, when you select this
tool and click on the ground, hold down your mouse button in order to also set the

radius of the area before releasing the button to create the area in the place and size you
wanted.

If you make a mistake, you can Undo the area, or use the InstanceEditTool.
Clicking on an instance with this tool will select it – surrounding it with a green
translucent sphere. Select the area you placed. Now hold down the CTRL key, click

and drag the mouse. Normally this would rotate the instance, but because Areas are round, it
instead allows you to change their size. Holding down ALT instead will allow you to move the
instance to another position. When you are done, find the new Area in the Instances list and
change its name to LZ_1_area.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 11 of 89

The Landing Zone area and marker is where dropships land, but where
do they come from? The BasePosition is an Area and it needs to be
placed quite a distance away from the Landing Zone. In Ground Control

II: Operation Exodus, landing zones lay between 750 and 1000 meters from their base
position, and most importantly, 500 meters outside the PlayField. Red lines cross the visual
battlefield where the PlayField ends, and it can be changed by pressing the 5th button on the
first row, PlayFieldCoords (shortcut 3). Do not do that now, but place a second Area
instance somewhere outside of the red line. If you want to check the distance between them,
the RulerTool (shortcut TAB) is the 2nd last icon on the second row. If you place too many
areas, use the Delete key on your keyboard, or press the InstanceDeleteTool (shortcut T) to
remove the selected instance. Rename this area LZ_1_base.

The last item that needs to be placed in the world is a camera to watch over the
Landing Zone. This is the point of view that a player will return to if the W key is
pressed while in the game. Placing cameras is fairly easy: Find a good view in XEd,
preferably one with good overview of the landing zone, and press the

AddCameraPosition (shortcut F12) button. You will not see the camera
from that perspective, because your view is currently inside of it, but if
you move your view, the camera will appear as a small, blue blob in mid-
air. To change the camera, move your view to a new position, select the
camera in the Instaces list on the Instances panel and click the
button “Set current camerainstance to this” on the right side of the
list. When you are done, change the name of the camera to
LZ_1_cam.

Before we start scripting, it is a good time to review the names we
have chosen for the items related to the Landing Zone we are
about to create. In the Instances panel, find the top right area
named Text Labels and activate the ones relevant: Areas, Things

and Cameras. This will make the instance names visible in the world, which
can be helpful or confusing, depending on the amount of visible instances.

You now have all the components necessary to create a landing zone. Use
ViewScriptsDialog to make the script panel visible. In the upper left is a list of all
existing scripts. As you can see, START is the only script listed, and it is empty.

When you have closed that window, click the New button in the Script window to create a new
script named ZONES.

Select the START script, find TRIGGER_AllPlayersReady under Available Commands and
double-click it. Change myTriggeredScript to ZONES. This means that once the trigger
activates, it will start the ZONES script, and the commands within it will run. In our case, that
means the Landing Zones are created once all players are reported ready. Now find the
WEATHER_ChangeWeatherEffect command, and double-click it. When the options for this
command shows up, select one of the Default_Cloud weathers, as this will add a cloud cover
and fog border to your map.

Select the ZONES script. In the list of Available Commands, find TEAM_AddZone and
double-click it. These are the attributes relating to Zones. First fill in the objects we placed in
the world: set myZoneMarker to LZ_1_thing, myArea to LZ_1_area, myBasePosition to
LZ_1_base and set myCamera to LZ_1_cam. Change myStartingTeam to TEAM_1, then
change myIsLandableFlag to TRUE and finally change the myMinimapIconFile to point to the
file ui/skins/lz.dds rather than vl.dds. Leave all
other values for now. Once you press close, you
can now see the new TEAM_AddZone
command listed on the top right hand list when
the ZONES script is selected. Use the right-hand

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 12 of 89

Rename button to the name of the landing zone to LZ_1. Now do it all one more time to
create a second landing zone.

This time, name all components something with LZ_2, and tie them all together with a
TEAM_AddZone command with myStartingTeam set to TEAM_2. Rename this new zone
LZ_2. Once you have done this, all components of the map are in place. Click save to name
your map and save it. Once it is saved, press the Export button, if you can. Sometimes, it
becomes disabled and you will need to move the camera or something in the world for it to
realize that the map has been “changed”. Wait for the export to be completed, and when it is
done you will have a brand new SDF file in your Custom_maps directory – your very first
exported and compressed map for Ground Control 2.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 13 of 89

Part II: Xed Manual

XEd Overview

The user interface
XEd's main window contains a menu bar, a toolbar, a status bar and the 3D-view, where most
of the editing is done. The most commonly used commands are available both on the menu
bar and the tool bar, while both also contain some unique commands.

Moving around
To move around in the world, hold down your right mouse button, or RMB, and move the
mouse. Use the mouse wheel to change the camera height. To turn the camera, hold down
Ctrl + RMB and move the mouse. Holding down ALT at the same will slow down the
movement speed, for greater accuracy. The status bar shows information about mouse
pointer coordinates, number of placed instances and current instance position and rotation.

Orientation and coordinates
As you can see from the status bar while pointing the mouse pointer at the ground, the
coordinate system has the [0:0] point in the top right, north-east corner of the map, and
coordinates grown down and left or south and west from there. This affects the placement of
instances, wind directions and playfield coordinates among other things. Try to keep this in
mind.
X is 0 (zero) along the map’s east edge and increases to 3072 toward the west edge of the
map. Y is the altitude over zero level on the map. Z is 0 (zero) along the northern edge of the
map and increases to 3072 the further south it goes. The ground itself can never be taller
than 127 meters, but instances can be placed higher than that.

The menu bar
The commands for New, Open and the Save work much the same as all other programs
which edit files. The Export command on the other hand allows you to compile and save the
map into a special compressed format (SDF) which can then be loaded into Ground Control II
and distributed as the final map.
Some commands are available only from the menu bar, such as “Reset all windows” which
can be useful if you accidentally lost a window, or placed it on a monitor no longer connected
to your system. The reload commands are also only available on the menu bar. Using these,
XEd can be used while different data files are being edited on the same disk as XEd is
running on. When certain files have been updated, the “Reload” commands will allow you to
update the relevant data and display the result immediately without the need to even restart
XEd.
The command Cycle Weathers will allow you to view the map with various weathers active,
which would otherwise require you to start the game and wait for the script to activate a
weather. Every click on the Cycle Weathers command will change to the next listed weather.
Using Reload environment will remove all weather effects.

Menu Command Shortcut Description

File

 New Starts a new map. Displays the select
landscape dialog.

 Open Open a mission with the “Open” dialog.

 Save Saves the mission. If the mission is
unsaved, the “Save As” dialog appears.

 Save As Give mission a new name and save it.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 14 of 89

 Export Shift X Compiles map and saves to SDF format.

 Batch Export Ctrl Shift X Exports multiple missions at once.

 Import Heightmap Opens a file dialog to select a 513x513
pixel greyscale TGA for a heightmap.

 Exit Alt F4 Exits XEd.

Edit

 Undo Ctrl Z Undo (up to) the 500 latest commands.

 Preferences 5 Displays the preferences dialog.

View

 2D Map Shift F6 Toggles the 2D map.

 World brush options Shift F2 Toggles the WorldBrushOptions dialog.

 Texture brush options Shift F3 Toggles the TextureBrushOptions
dialog.

 Instances Shift F4 Toggles the Instances dialog.

 Scripts Shift F1 Toggles the Scripts dialog.

 AI Hint options Shift F7 Toggles the AI hint options dialog.

 Reset all windows Reset all windows to default positions.

Commands

 Data Reload all textures F9 Reloads all textures from disk.

 Reload all models F8 Reloads all models (MRB files) from
disk.

 Reload all splatscripts F7 Reloads splat scripts from disk. Re-
textures the terrain, destroying changes.

 Reload Mission F6 Reloads the entire mission from disk.

 Reload environment F10 Reloads the environment data from disk.

 Regenerate splatting F5 Regenerates texture “splatting”. This will
delete any texture painting.

 Regenerate lightmap F3 Regenerates the light map. Useful after
changing environment.

 Regenerate minimap F4 Regenerates the mini-map.

 Generate fractal heightmap 6 Displays the Fractal Heightmap
Generator dialog.

 Camera Add camera position F12 Adds a camera position instance.

 Snap Snap all instances Snaps all gridded instances to the grid.

 Put on ground Puts selected instance to ground.

 Mission stats 1 Displays the mission settings dialog.

 Select environment 2 Displays the select environment dialog.

 Playfield coordinates 3 Displays the playfield size dialog.

 Floodfill 4 Displays the flood fill dialog.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 15 of 89

Weather
preview

 Cycle weathers Cycle between weather effects. The
status bar displays the current weather.

Help

 Help topics F1 Displays the help file.

 About XEd Displays the about and credits dialog.

The tool bar
The entire first row of buttons on the tool bar consists of commands available from the menu
bar, and so will not be repeated here. However, it can be good to know that the tool bar
buttons display a visible “pressed” state when they are activate. This is useful for toggling the
different option dialogs on and off. Sometimes, dialogues end up on top of each other, so be
sure to move your dialogs looking for that last one.

Group Button Shortcut Description

World tools Paint to height tool Z Selects the paint to height tool. Use this tool to
raise or lower terrain towards the target height.

 Paint +/- tool X Selects the paint +/- tool. This tool can both
raise and lower terrain by the Step value.

 Set height tool C Selects the set height tool. This tool picks the
height under the cursor for other tools.

 Ramp tool R Selects the ramp tool. This tool can create
height field ramps using the current brush.

 Inspect tool J Selects the inspect tool. This tool displays
passable and non-passable areas on the map.

 AI hint tool H Selects the AI hints tool. Use this to paint hint
maps, describing valuable areas to the AI.

Texture tools Texture paint tool V Selects the texture paint tool. This paints with
the current texture, brush and pressure.

 Texture erase tool B Selects the texture erase tool. Erases texture
painting, reverting terrain to splat script defaults.

Instance tools Instance edit tool F Selects the instance edit tool. This tool is used
to select, move, rotate and resize instances.

 Instance delete tool T Selects the delete tool. This tool deletes
selected instances when it is selected.

 Instance copy tool Y Selects the copy tool. This lets you place copies
of the selected instances.

 Instance grep tool U Selects the grep tool. This tool selects all
instances of the same type.

 Instance pick tool I Selects the pick tool. This tool sets the selected
type to the type of the instance clicked on.

 Instance place tool Q Selects the place instance tool. This tool places
instances of the currently selected type.

 Area place tool Ctrl Q Selects the area place tool. This tool places
areas for use in scripts.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 16 of 89

 Ruler tool TAB Selects the ruler tool. Click the ground and hold
down your mouse button to measure distance.

 Choke points tool K Selects the choke point tool as the current tool.
This tool defines chokepoints in the world.

Other commands
Some commands are listed neither on the menu bar or the toolbar, but has key shortcuts and
mouse commands. LMB, RMB and MMB refer to the left, right and middle mouse buttons in
the list below, and “MWheel” is the wheel on most mice.

Command Shortcut Description

Delete DEL Deletes the currently selected instances.

Deselect F2 Deselects all selected instances.

Move up W Moves camera forward.

Move down S Moves camera backwards.

Move left A Moves camera left.

Move right D Moves camera right.

Move around RMB Hold this and move the mouse to move around the map.

Draw gestures MMB Hold down and move mouse to draw gestures.

Free look CTRL RMB Hold down and move mouse to look around.

Slower ALT Hold down while looking or moving to move slower.

Change altitude MWheel Raise and lower the camera.

Gestures
The middle mouse button, or MMB, is used for gesturing, i.e. invoking commands by drawing
a pattern on the screen. Predefined gesture patterns can be assigned to commands in the
preferences dialog.

The status bar
The status bar shows information about mouse pointer coordinates, the number of placed
instances and the position and rotation of the currently selected instance. When Cycle
Weathers has been used, the current weather is also typed out here, on the far left.

Modes
You could say that XEd can work in four distinctly different modes. The first three all deal with
the three-dimensional display: World editing, Texture editing and Instance editing. The fourth
– or first, depending on tastes – deals with script editing and all kinds of JUICE file editing. It
is not a mode in the same way as the first three, but it is a distinctly different area to work in.

World edit mode
The first mode, World Editing, is where you use the different tools to raise, lower and
sculpture the land according to your plan or inspiration. There is a levelling tool, a raise /
lower terrain tool and a ramp tool, which can be immensely useful to creating terrain which
agents should be able to move across. It is always a balancing act to create a map which
looks realistically rough but which is also even enough that vehicles can drive across it
without looking like they’re running the slalom.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 17 of 89

Texture edit mode
In the second mode, Texture Edit mode, the four or six available landscape textures can be
painted onto the surface of the terrain with various pressures. This way, the few available
textures can be combined to create at least sixteen distinct combinations. A flat dark rode can
have a vague covering paint of cracked ground to make it look rougher, or mountainsides
could have a thin paint of dark asphalt to make it look shaded and varied.
Some basic texturing is performed automatically by what is called “splat scripts”, which decide
that mountainsides have one default texture, low and even terrain have another texture, high
even terrain have a third texture and so on.. but these basic outlines are not suited for all
terrains, and will look repetitive unless touched-up using the Texture Paint tool. Use a low
pressure and a wide soft brush for easy touches, or raise the pressure to draw sharp
distinguishing lines between textures.

Instance edit mode
In this mode, objects are placed, moved, copied, selected and deleted from the mission. This
is the mode in which tanks are placed on the ground or moved across it, areas are placed and
drawn up to size, ambient sounds are sprinkled throughout the landscape and animated
objects are placed and rotated to where they will stand so that the cinematic cameras can see
them for cutscenes and the like. Therefore, this mode is closely tied to the final and most
complex mode – script editing.

Script edit mode
The script mode is the “programming” of level design. This is where objects become
interactive and where the in-game story takes place. A simple multiplayer map does not have
a lot of scripts: START is always where the map begins, and then there is a script for sounds,
one for zones and maybe one for neutral gun emplacements if you want them. Using various
commands these scripts are activated when they should be. A “Trigger” waits for all players to
connect to the game before creating landing zones, letting the map begin. A more complex
multiplayer map may contain script events for taking over bases, stealing a flag, destroying
important buildings or vehicles, entering a minefield, winning the game on a special condition
or any one of a thousand possibilities.
A single-player mission can have several dozen scripts, sometimes as many as fifty or sixty,
with sweeping camera angles and cinematic cutscenes, complex mission objectives with
multiple actions that need to come together. It sounds difficult, and it is difficult, but it needs
only be as difficult as you want it to be. It is up to the designer to decide how complex the
map should be.
This mode will be described in the chapter The Basics of Scripting and then in greater detail
in the Script Reference.

Tools
What follows is a listing and descriptions of the tools available to you in the World, Texture
and Instance edit modes. All tools will activate their relevant options dialog as soon as they
are selected. These dialogs can also be toggled from their corresponding tool bar buttons.

World edit tools
These are the commands available in World edit mode. As soon as either of these commands
are selected, the World brush options dialog becomes visible.

Name & key WorldPaintToHeightTool – Z
Undoable Yes

Description
This tool uses the currently selected Brush from the world brush options
dialog, and the Pressure setting to change the height under the cursor
towards the target height. The higher the pressure, the faster the change.

LMB Paints world up or down toward Target Height using Pressure with the
current Brush.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 18 of 89

Shift MWHEEL Changes the current Brush.

Name & key WorldPlusMinusTool – X
Undoable Yes

Description This tool uses the currently selected brush to increase or decrease the height
of the heightmap with the number of meters of the Step value.

LMB Increases heightmap Step meters using the current Brush.

Shift LMB Decreases heightmap Step meters using the current Brush.

Shift MWHEEL Changes the current Brush.

Name & key WorldSetHeightTool – C
Undoable No

Description
This tool picks the current height of the heightmap under the brush and sets it
as the current Target Height. With a large brush, the average height of all
points under the brush is used.

LMB Sets Target Height to the height currently under the mouse pointer

Shift LMB Same as above but rounds the height off to the nearest half meter.

Shift MWHEEL Changes the current Brush.

Name & key WorldRampTool – R
Undoable Yes

Description Click and drag with this tool to create a line which represents the ramp. When
mouse button is released the ramp is created. Ramp is effected by Pressure.

LMB
Press the mouse button where you want the ramp to start, and hold your
button down while moving to the position where you want the ramp to end.
Release the mouse button to create the ramp using the selected brush.

Shift MWHEEL Changes the current Brush.

Name & key WorldInspectTool – J
Undoable No. This tool only displays data, it alters nothing.

Description This tool displays a 32x32 tile overlay that shows passable and non passable
tiles

LMB Hold down to show the land path map, for wheeled and tracked vehicles.

Shift LMB Hold down to show land-and-water path map, for hover movers.

Ctrl LMB Hold down to show land-and-woods path map, for infantry movers.

Name & key WorldAiHintsTool – H
Undoable No

Description Use this tool to change the values of the tiles in the various AI hint maps.

LMB Changes the value of the tile in the current “hintmap to edit” to the “Strength”
value.

Name ChokePointTool
Undoable Partially

Description This tool paints tiles in the chokepoint map, and associates a group of tiles to
a chokepoint instance. Note: This tool is unfinished and buggy.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 19 of 89

LMB
Click and drag to paint in the choke point map. When LMB is released, an
instance editor is displayed and you can manually assign area instances that
represent AI objectives to the left and right sides of the chokepoint

Shift + LMB Remove tiles from the choke point map

Texture edit tools

Name & key TexturePaintTool – V
Undoable Yes

Description Use this tool to paint textures on your current heightmap.

LMB Paints the current Texture using the current Brush and Pressure value

Shift WHEEL Changes the current Brush.

Ctrl Shift MWheel Changes the current Texture.

Name TextureEraseTool – B
Undoable Yes

Description This tool reverses any texturepaining back to splatscript default.

LMB Erase the texturepainting using the current Brush.

Shift MWHEEL Changes the current Brush.

Ctrl Shift MWheel Changes the current Texture.

Instance edit tools

Name & key InstanceEditTool – F
Undoable Yes (selection, No)

Description This tool is used to manipulate (select, move, rotate, and resizing (areas))
instances.

LMB Click to select an instance, drag to select multiple instances.

Shift LMB Adds a new selection to the current selection

Ctrl LMB Rotates the selected instance or instances. Gridded instances can not be
rotated when more than one instance is selected.

Shift Ctrl LMB Rotates the selected instance(s) and snaps to SNAPVALUE degrees

Alt LMB Moves the selected instance or instances.

Shift MWHEEL Changes the height of the selected instance(s)

Name & key InstanceDeleteTool – T, DEL
Undoable Yes

Description This tool deletes the selected instance(s) when activated.

Name & key InstanceCopyTool
Undoable Yes

Description This tool copies the selected instance(s), attaching the copies to the pointer.

LMB Click to place the copies

Name & key InstanceGrepTool
Undoable No

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 20 of 89

Description This tool selects all instances of one type

LMB Click to select all instances of that type

Name & key InstancePickTool
Undoable No

Description This tool sets the current instance type to that of the picked one.

LMB Click to select the current instance type

Name & key InstancePlaceTool – Q
Undoable Yes

Description This tool places instances (props, things, sounds, agents) in the world.

LMB Click to place the current instance type.

Ctrl LMB Rotate the instance being placed

Shift Ctrl LMB As above but snaps to ROTATION SNAP VALUE degrees

Name & key InstancePlaceAreaTool – CTRL Q
Undoable Yes

Description This tool places areas (used in the scripts) in the world

LMB Click and drag to place an area

Name & key RulerTool – TAB
Undoable No

Description This tool measures distances

LMB Click and drag to measure distance (meters in world space)

Name & key Wizard Manager - L
Undoable Depends on the wizard

Description This tool invokes the wizard manager, which helps you with some tedious
tasks.

LMB Depends on the wizard

World editing

Landscapes and environments
The first choice you will be asked to make when creating a new map is what Landscape you
want to use. There are five usable landscape types in Ground Control II, and one that does
not make good-looking maps, but is very nice to make maps on. The type of landscape you
choose decides what textures are available, what “environments” you can choose – normally
day, night and either twilight time – and perhaps most importantly, what things and props you
can use.

Battleground
“Battleground” is the bluish, rubble-filled landscape of something that used to be a city. It
comes with five different textures, four for flat ground and one for vertical walls, both east-to-
west and south-to-north. Among these textures you will find rough dark concrete, broken
bright stony or rubble-strewn ground and two different thicknesses of garbage-filled ground.
One of these textures has “auto-props”, small objects sticking out of it, in this case steel
girders of fallen buildings.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 21 of 89

The props for this landscape consists of buildings and houses both broken and whole, lots of
different kinds and sizes of rubble, concrete bases to put buildings on, sidewalks, harbour
equipment and other post-apocalyptic city paraphernalia. There are also some NSA base
building blocks. For the environments, “Space day” is very blue, the “space morning”
environment is yellow and the “space evening” environment is very, very red. The “day”
seems darker than the other two, but it’s a trick of the blue light. “Morning” is the brightest of
the lot.

Desert
The dry yellow-reddish sands and sandstone of a desiccated alien landscape. This terrain has
six distinct textures, although two of them are only usable on more or less sheer cliff sides.
The east-to-west cliff side texture is at least different from the north-to-south texture, which
increases variety. Among the other textures you will find dry hard-packed sand dunes, rough
darker gravel, sandstone just barely covering shimmering metal ore and one rougher, stonier
texture useful for regions mountainous without being vertical. This is a texture set where
combinations can lead to a great many varieties, as most of these textures work very well
together.
Desert comes with the expected props: Rocks, stones, rocks, dry bones and strange alien
vegetation, alien relics and small buildings of Imperial and Viron designs. There are two
different environments, one for an orange evening and a morning with a lighter fog, darker
ground and a very bright western sky on an alien planet.

Farmland
This landscape was once something like farmlands, but due to the passage of time it has
since turned into a swampy verdant jungle. Everything is green, except in the “FL_Night”
environment light, where everything turns a sandy dark orange colour for some reason. There
are only four textures, two of which are more or less covered in a tall grass, one uneven grey-
black rocky surface and one pattern of swampy trampled grass and vegetation.
The available props are consists of many kinds of vegetation, alien trees, giant flowers,
xenofacts, strange broken tree trunks and overgrown old buildings. For the base-builder,
there are many different kinds of building platforms and ramps, drills, industrial equipment and
energy barriers. Several of the vegetation props are so-called “blocks”, single objects which
cover a large surface area and look like many small trees standing close together. Combined
with “break” objects, to break the monotony, these can be used to quickly cover large areas in
realistic-looking vegetation.
There are many environments available in this landscape, such as the FL_morning,
FL_evening, FL_sunset and FL_noon which is the brightest of the green environments. The
orange Night setting is confusing, but looks good and has a very dark night sky overhead.

Icevolcano
Combining a black volcanic surface with very white snow dunes results in a very versatile
landscape type. There are five textures – the two vertical textures are slightly different, but
similar enough – and among these five we find one very black basalt / cooling lava texture
and one very bright blue-white fairly smooth snow texture, as well as two textures of blue and
white glacier ice, where one is has rounded cracked pieces and the other is more chaotic.
Environments are the expected Evening, Morning and Noon. Yellowish morning light casts a
golden sheen over the ice, trailing blue shadows across the darkening terrain. The Evening
environment is cast in purple light and very faded blue shadows while the noonday sun high
in the sky makes the snow glow very white with short but very dark shadows.
For this landscape to truly have any volcanoes, props need to be used. There are several
crater props, smoke belching objects and even lava rivers, along with trees and great chunks
of ice. This landscape also features many different kinds of NSA base equipment covered in a
thin layer of snow.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 22 of 89

Islands
This is a very versatile subtropical landscape featuring sand, grass, dark rock or concrete,
and mountainous rock, as well as both types of vertical, rocky textures for cliffs and
mountains. “Islands” is the perfect landscape for recreating the white cliffs of Dover or most
European inland settings, or beachhead missions. Available props range from all kinds of
trees and bushes to many facilities and buildings for both the NSA and Terran Empire.
The available environments are morning, noon, evening and night, all of which are fairly
neutral. The evening light is bluish while the night has a sound measure of purple light from a
beautiful setting sun on the horizon.

Orange
While all the other landscapes are intended for actual use when creating missions for games,
the Orange landscape type was only created in an attempt to increase visibility while editing
the heightmap. The slope map is immediately visible in red textures slopes and all textures
contain a grid, making the shape of the ground more easily visible. There is also a green
texture, useful for doodling roads and highlighting strategically important areas of the map
while planning how you want the map to be played.
Use this landscape to create your map with clear visual cues, then import it into your “real”
map with your desired landscape. Actually creating a map based on this landscape might not
even work in the game. Warning: Not all environments listed for the Orange map work. Some
might even crash XEd, destroying your unsaved work.

MissionStats
The mission stats (for “statistics”) juice editor is available both as a button on the tool bar and
on the Command drop-down menu. One very important part about the mission stats is that
any map which is going to be played by AI’s – which means most multiplayer maps for
skirmishing, and all single player maps – need to have an AI player defined under myPlayers.
This is in order for XEd to export the full data necessary for AIs to play the map. If there is no
AI player properly configured for the map, the map will crash if it is started with AI players
present.

Initial options
This is where individual map settings are stored, such as the name and description of the
map, whether it should be sorted under Multiplayer or Single player maps, how many
Acquisition Points each player starts with, and many other settings.
The settings for name and description are fairly obvious. Normally, the name is kept short and
the description is written to explain what needs to be done to complete the level, how large
the map is and what the general objectives are. This space is limited, however, so keep it
short.
The Mission “Type” only really defines whether the map will be sorted as a multiplayer map
and show up on menus for on-line play and LAN, or if the map should be sorted as a single-
player map under Custom Missions. There is no other difference between the two types of
map.
When the map begins, all players should have some currency to play with and order their first
units to the ground, or upgrade some critical system on the drop ship. This starting wealth is
defined in the myInitialAP value. This is how many AP each new player will get when he or
she connects to the game. There is nothing stopping you from setting this value insanely high.
Go right ahead. 7000 AP is the default.
Further down, we also find myWindDirection. This value controls the behaviour of smoke and
clouds, and ripples on water. The wind direction is measured as a three-dimensional vector
which should end up at around 10 total. The default value is an X and Z of 4, and a Y of zero.
This means a wind coming down from the north-east corner of the map, blowing toward the
south-west corner of the map.
There are also settings below the middle called myLoadingScreenImage and
myLoadingScreenText. If you have ever started a mission, you know what a loading screen
normally looks like, and that the text appears in the designated top half of the screen. If you

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 23 of 89

just want a pretty picture, feel free to leave the text field empty. Loading screens need to be in
the DDS format, and will be resized to fit the screen while the mission loads. There is no
restriction on where loading screens must be loaded from, but there are several screens
available in the default directory UI / backgrounds and its subdirectories.

Player settings
After wind direction, the players are defined. The values stored in myPlayer are absolute for
Single-player maps, but can be changed in multiplayer games. For example, when an AI
plays a multiplayer map, its settings are loaded from a completely different file.
The myPlayers branch contains data on all eight players, most notably whether they are
scripted, AI or human, what faction they belong. Valid faction names for Ground Control II are
NSA, “Terran Empire” or Viron, but if more factions have been added, this is where the exact
faction name should be entered to have the player use those instead.
After myFaction we see their team membership, then a setting for what colour it should have.
In multiplayer, colours can be selected, but that selection must be made from what colours
were attributed to the eight players under myPlayer for the mission. Stick to the defaults here
and you’ll be fine. Then comes the player’s name. Again, this is irrelevant in multiplayer but in
Single-player, this is often how the different players are identified. This name appears over
units belonging to that player when a mouse pointer is held over them.
The setting myAIConfigFile is important only for players of myType AI, and is not used at all
for SCRIPT and HUMAN players. For AI players, the contents of this file – ICE files found in
the CommanderAI directory – determines most of the behaviours of that particular AI.
myBasePosition is rarely used, or at least it shouldn’t be used because every Landing Zone
already has a base position defined for it. This value is the “default” base position, where drop
ships come from, if the player does not have a current Landing Zone. Because you cannot
call a drop ship unless you have a Landing Zone, you should be able to safely ignore this
value.
The two lists of Drop ship levels – myDropShipStartLevels and myDropShipMaxLevels –
together with the three other myDropship values, all control the behaviour and capabilities of
the drop ship. “Start levels” are the starting levels for all six types of upgrades, and the “Max
levels” are the maximum possible levels for each statistic, combined with the value “Max Total
Attribute Levels”, which controls how many “points” can be spent on the drop ship in total on
this map. If this value is set to 15, a player could increase three statistics by five points, and
then be unable to raise any further statistics, even if the player could afford it. This was never
used on either of the multiplayer maps because there was no suitable feedback to let players
know what was happening. It might still be a useful setting, however.
If a drop ship is shot down, the “Respawn Time” is how many seconds will pass before a new
drop ship becomes available. The default value is 300 seconds, or five minutes. This may not
seem like such a long time, but when you really need new troops, five minutes plus the time it
takes to fly to the Landing Zone in a drop ship with standard engines can be an eternity.
Drop ships can also be turned off completely by changing “Drop Ship Is Available Flag” from
TRUE to FALSE. That means no drop ship will be available to the player for the entire
duration of the map.

Allowed and disallowed
By default, all agents and support weapons are allowed on all missions. Virons are also
allowed, on all missions, to meld any unit into a new form. However, this behaviour can be
changed using the three “Disallowed” lists. By selecting an agent on the DisallowedUnits list,
that unit can no longer be requisitioned using Acquisition Points. By selecting a type of
support from the DisallowedSupportThings list, that type of support will no longer even be
visible on the support menu. Finally, by adding certain melded Viron agents to the
DisallowedMelds list, the Viron can no longer create that agent through melding. The reason
this is different from DisallowedUnits is that Virons cannot requisition these agents anyway,
and so there needed to be a special way to stop melding. However, by blocking melding in
this way, players may become confused that they can no longer meld units that are normally
able to meld. Use this with discretion, or thoroughly inform the players that they will not be

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 24 of 89

able to use those agents on this map. To select more than one item from these lists, hold
down CTRL while clicking on them, or dragselect in the list.

Victory conditions
If you want a simple way to win, just set a score limit or time limit. Both of these are just
default values for the map, and can by changed when the map is started. If myScoreLimit is
higher than 0 (zero), the team or player who first reaches that high a score will win the game.
Please note that Score is not exactly AP, but must be gathered during the course of the game
by destroying enemy agents and taking zones.
When myTimeLimit is higher than 0.0, the game ends when the time runs out and the player
with the highest score wins. Please note that myTimeLimit is stored in seconds, not minutes
or hours, so 300 would be a five minute mission and 3600 would be an hour-long mission.
At the bottom of myMissionStats we find five values that “Allow” different four kinds of “defeat”
and one kind of victory. “Allow scripted victory” is TRUE by default, and means that the script
command SCRIPT_SucceedMission can be used to give victory to a team. This is how
Single-player missions are won, and so by changing this setting, a single-player mission can
be easily converted into a multiplayer map by disabling “Winning through following the story”
so to speak. Playing a single-player map with this setting would normally mean it never ends,
but that’s where you could either add a time limit, a score limit, or activate the other four
“defeat” conditions: You do not win because you did something fantastic.. you win because
your enemies have all been defeated.
To allow “No LZ” defeat means that if a team loses all of their Landing Zone, they are
defeated. In a two-team match, that means the other team wins. This setting is FALSE by
default, since losing an LZ does not necessarily mean you cannot get it back.
Allowing “No VL” defeat is similar to the above but deals with Victory Locations. Using this
setting is also similar to the old Ground Control game type called Flag Zones. If one team
controlled all the Flag Zones, that team won the game. This is exactly it. If one team controls
all Victory Locations, this setting will mark all other teams as defeated. This setting is TRUE
by default, because most missions are intended to be won by taking all VLs. That’s why we
call them VICTORY LOCATIONS.
“No units” defeat is self-explanatory. If this type of defeat is set to TRUE, any player who has
lost all of his units will be considered defeated. Please note that not all types of agents are
included in “no units”. If all you have left is a hovering radar support thing, you have still lost
because a little tiny radar is not going to win your war. If you do not approve, make sure the
“Allow no units defeat” setting is set to FALSE, as is the default.
The “No Presence” defeat is a little more complicated. It is a combination of “No LZ” and “No
Units”, basically, in that a team will not until they have no units AND no way of getting new
units. Normally this means they have lost their last LZ, their last usable unit, and they have no
way of getting new ones. This type of defeat is allowed by default.

Heightmap creation and editing
In World Edit mode, all tools either analyse or manipulate the three-dimensional height map
which constitutes the battlefield terrain. The six tools related to this mode all have names that
begin with “World” and end with “Tool”. The five first are, from left to right on the tool bar:
Paint To Height, Plus-Minus, Set Height, Ramp and Inspect There is a sixth tool, AI Hint,
but it works a little differently and will be explained further on.

Floodfill
Before you begin creating your own height map, it might be good to know what “floodfill”
means. When you start an all-new map, it will be covered in water and have no distinguishing
features. The reason is that the terrain starts at level 0 (zero) out of 127 meters, and the water
level is somewhere between 19.0 and 19.5 meters above that level. Using flood fill, on the
Command menu, you can enter a number value between 0 and 127 and that value will
become the new lowest terrain height. Any point lower than this value will be filled with new
ground. If the flood fill value was above 19.5 meters, no water will be left visible on the entire
map.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 25 of 89

This is a simple way of getting a starting situation where you can both raise and lower land,
instead of just raising islands out of the water the time. Just a tip.

World Brush Options
As soon as any one of these tools (except AI Hint) is selected, the World brush options dialog
panel will appear, if it has not been toggled to visible already. This dialog lists three different
values, one Brush selection box and two option checkboxes.

Target Height
The first value is Target Height, used by the Paint To Height tool. This value is the height in
meters and half meters above the absolute bottom of the map. Sea level is normally just
below 20 meters. This value signifies the height towards which all brush strokes will strive. If
the painted terrain was higher than this value, it will be lowered, and vice versa if the painted
terrain was lower. More or less eventually, drawing repeatedly on a map with this tool will
create a flat map of this altitude. The Paint To Height tool is therefore a useful way of
creating plateaus, flat roads, mesas or mountain chains of the same average height.

Pressure
The second value is Pressure, in percent from 0% to 100%. This is how much each “brush
stroke” should contribute towards the target height. Setting it too low will have no effect at all
while painting, because no single brush stroke will make enough of a difference. Setting this
value too high will make a single brush stroke set the terrain instantly to the target height.
Change this value to make your brush strokes have a more or less drastic effect on the
terrain.

Step
This value alters how the Plus-Minus tool affects the terrain. Every click with the tool will
change the terrain by this amount of meters either up or down. This can be useful for creating
step-like areas, but too high values will almost definitely create unreal-looking terrain and
textures will look stretched.

Brush
A brush is a small greyscale image which is used to make an impression on the terrain or
textures of the world. The default setting is a round, smooth brush which is more intense in
the middle, and weaker out towards the edges. Painting with this brush can get you rounded
hills, or cauldron-shaped valleys. There are several both smaller and larger brushes of the
same type, as well as square brushes with sharp edges, brushes that look more random and
a few odd brushes for sharp corner walls. The whiter the brush, the sharper the impression on
the map.
Combined with high Pressure or Step values, a single click with a brush will imprint the exact
look of the brush on the terrain. Keep the pressure and step low and move your mouse
around while painting to get real brushstrokes and rolling, extended swathes of altered terrain.
Experiment until you get the hang of it.

Update Textures while painting
This option is on by default, meaning that the “splat script” textures will be automatically
regenerated while you change the altitude of your terrain. While first trying out a terrain, this is
okay, but once you have used the Texture edit mode to alter the look of the terrain surface,
you might want to disable this option or the automatic retexturing will destroy any texture
changes you have made.
Default texturing can always be recreated by either of the menu options Reload all
splatscripts and Regenerate Splatting, both of which will reset all texturing, but it can also
be done using the TextureErase tool which uses brushes to restore only desired areas on the
map to default texturing.

Update textures on import heightmap
This option works much the same as Update Textures while painting, except it works on
imported height maps. There are times when you want to edit a height map in another tool
such as Adobe® Photoshop™ or Terragen® and then re-import the altered height map into

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 26 of 89

XEd. If this option is checked, all textures will be reset to the splat script standards. If the
option is unchecked, the terrain will keep its current texturing even after the new height map
has been imported. If large changes have been made to the terrain, it may be best to keep
this option enabled, but if only minor changes have been made to altitudes and the shape of
hills and valleys, keep it disabled.
Again, if you only wish to retexture some areas of the map, the Texture Erase tool may do
the job better.

Paint to Height tool
The Paint To Height tool is the default tool for world editing. Use it in conjunction with the Set
Height tool to create terraces, calderas, plateaus, flat beaches, wind-eroded Texan cliffs and
Scandinavian raukar. Use it in long drawn-out lines to create rivers and oceans. This tool can
raise mountains that end up having flat tops and sharp sides, whereas the Plus-Minus tool
would end up raising the original terrain with all its unevenness. Drawing the terrain with a
high pressure is a good way to start creating the rough outline of he map, but eventually a
lower pressure will create the better-looking map. It is better to use a lower pressure but more
repeated strokes. One drawback of the Paint To Height tool is that when the painted area
reaches the target height, the terrain becomes more and more flat the more brushstrokes are
applied, and flat terrain very rarely looks natural.

Set Height tool
The Set Height tool is similar to the “colour picker” tool found in many art programs. The
height map can be described as a greyscale picture, and this tool can be used to pick a shade
of grey so that the Paint To Height tool can then paint using that exact shade of grey. The
combination of these two tools will allow you to expand areas that already lie at a certain
altitude, such as beaches, plateaus or mountains of a certain average height. Switch between
the two tools quickly using the C key for Set Height, and Z key for Paint to Height.

Plus-Minus tool
Because the Plus-Minus tool can both raise and lower terrain at the press of a single button
– shift – it is a very useful way to alter an existing terrain. Height differences can make a
height map look larger and more complex. One benefit of using the Plus-Minus tool instead
of Paint To Height is that the original surface texture, if the terrain was already full of small
bumps and dunes, will still be there after the terrain has been raised or lowered. The Plus-
Minus tool is also useful for creating slopes and is great for making minute changes to a
terrain, especially in conjunction with the Inspect tool, to make areas passable or non-
passable. The Ramp tool is even better at this, though.

Ramp tool
The Ramp tool is a quick, easy and even fun way to create passable areas from one part of
the map to another. Because the ramp can become perfectly flat but yet tilted, it can also be
used to create flat roads in rough landscape, or to extend a riverbed in a straight line. It is also
your best bet for evening out bumps and roughness in sloping terrain.
Use the pressure value to affect how powerfully the ramp will affect the underlying terrain
features. At 100% the ramp is an absolute line from start to ending, while at 10% the terrain
still maintains some semblance of what it looked like without the ramp. Use low pressure
settings to create terrain which seems to slope naturally rather than artificial-looking ramps
from point to point. Be careful what brush you use for this tool. A square brush might seem
like a good idea but is only really useful for north-to-south or east-to-west ramps. Additionally,
square brushes will create large flat areas in the starting and ending position. Rounded,
smooth brushes are better because they can go in all directions and will not cause too sharp
edges.

Fractal terrain generator
The fractal terrain generator can be found on the Command menu, under the Data heading,
click the option at the bottom entitled “Generate Fractal Heightmap”. Save your map before
you start playing with it.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 27 of 89

Fractals can be a quick, easy and even fun way to create good-looking maps. However, these
maps are rarely immediately useful because the random nature of fractals will mostly allow
you to create a terrain of a general type. It will never be a map with logical places for bases,
victory locations and landing zones with roads in between. Despite this, terrains created with
the fractal terrain generator can be both beautiful and realistic, and can be excellent starting
points for your own ideas.
Do not be afraid to play around with the settings, loading the various presets and try rendering
them one by one, but be careful not to set Iteration values too high, as this can take a lot of
time to render. The end result will have much more detail, though.
It is also possible to use just the filters to change the look of your current terrain without
destroying it altogether. You can do that by selecting only the Filters tab and raise the
“Smooth filter” value, and click “Apply current”. It is also possible to create a fractal heightmap
and then “blend” it with the current terrain so that some existing features remain. Do this by
making sure that the “Clear heightmap” option in the lower left of the dialog is DISABLED, and
that the “Blend Value” is somewhere on the scale. Left is less, right is more. In early versions
of XEd, “Clear heightmap” was the opposite of what was intended – if the box was checked,
the height map was cleared before applying fractals, and if the box was empty, the heightmap
was destroyed first. The “blend value” can also be used to control how much of an impression
each type of fractal calculation will make on the final heightmap.

Occupancy grid and slope maps

Inspect tool
While you work on the height map, use the Inspect tool regularly to see the various “slope”
maps. This shows you what areas will be passable by different types of agents without the
need to save, export and play the map in the game. Use the tool frequently while moulding
the terrain to your desire making sure that the mountainsides you just created are indeed un-
scaleable, and that roads are flat enough for vehicles to drive on.
Hold down the left mouse button and the desired modifier keys to display the three different
kinds of passable areas. Green means an agent can pass, red means it cannot. There are
three different kinds of path map. The first one is “Land”, for wheeled and tracked vehicles
such as the NSA Engineer and NSA tanks. Water, forests, and buildings are off-limits to these
movers. The second map, which is displayed by holding down SHIFT and the left mouse
button, is the “land and water” path map which contains all the areas that can be traversed by
hovering agents such as Viron and Imperial vehicles. The third path map, displayed when
CONTROL is held down, is the land-and-woods path map, which indicates where infantry can
go.

Show occupancy grid
When using this tool, it can be very good to also activate “Show occupancy grid” on the
Instances dialog panel. To do this, you first have to make the Instances dialog visible. You
can do this either by selecting an instance tool, or by pressing the ViewInstanceDialog button
on the tool bar.
The Inspect tool displays what effect the shape of the ground has on the ability to pass, while
the Occupancy grid shows what areas are blocked and made passable by Props. Red means
none can pass, black means infantry can pass and white means that anyone can pass, even
if the ground underneath is ragged enough to produce a red “slope” map in the Inspect tool.
This is how bridges can cross canyons. The canyon is full of red impassable slope tiles, but
the bridge’s centre line is all white, and so vehicles can pass over it and over the canyon.
Please note that if a prop surrounded by a white occupancy is placed near a sheer cliff,
agents will be able to “walk on the air” around this prop. Be careful!

AI hints
When the AI Hint tool is selected, the Hints options dialog appears if it has not been made
visible already, and the mouse cursor will be surrounded by a coloured grid indicating the
current values of the selected influence map. There are three kinds of influence map:
Strength hints (dark green to bright orange) which affects how valuable the AI will consider

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 28 of 89

the marked spot of land, Support map (pale green to sharp blue) which affects how important
the AI will believe it is to use support weapons on the ground and Minefield map (dark purple
to lime green) which was intended to affect the AI’s idea of where minefields should be
created.
The AI hint map editor is based on tiles 6 meters by 6 meters, same as the grid used for
occupancy and path maps. Hint values can be changed by selecting a “Strength” from the
Hints options dialog and click on the ground in the 3D view, to paint tiles in that strength
colour. All tiles have the value 127 by default, which is the middle value. The relative
importance of an area can then be controlled by painting it both weaker and stronger
according to taste. This is a good way to make the AI stay away from certain areas which
would otherwise seem good – such as high ground which is hard to get to – or to prioritize
areas without any obvious advantage, such as the flat ground in front of a base defended by
the AI.
If choosing between two positions of otherwise equal value with regards to their proximity to
the objective, their altitude over zero-level and so on, the AI will always choose the spot which
has also been given additional strength on the AI Hint map. The Support and Minefield hint
maps work much the same way, but instead affects the likelihood that the AI will use support
weapons or mines on the painted areas. Increase support hint strength on natural roads and
choke points, where it is good or at least looks good to use support weapons.

Choke points
From the AI Hint Map dialog you also have access to the list of current choke points, which
are added by the Choke point tool. Items in this list can be double-clicked and edited, as well
as deleted. To add a choke point, select the special Choke Point tool on the toolbar, and hold
down your mouse button while drawing over the terrain in natural choke points. White squares
will be created as you draw, and all of the selected white squares will become part of the new
AI choke point. When you release the mouse button, a juice editor will pop up asking you to
define what AI objectives exist on either side of this choke point. Try to list them as logically
as you can, as a choke point is defined as the only, or at least the best way to pass between
two strategically important areas. Note that chokepoints are not implemented in Ground
Control II, and will have no impact on gameplay.

Texturing and splatting
Textures are the images which cover the three-dimensional objects in a game to give their
surfaces a realistic look. The terrain, height map in XEd is textured automatically by
something called “Splat scripts”. “Splatting” is our name for textures that can be painted on
the ground in several transparent layers, on top of each other, to create a great number of
variations through combination.

Texture Edit tool
The default textures created by the “splat script” are usually a good starting position, but they
are repetitive. To create variety, try painting with other textures on a very low pressure and a
soft brush. Using thin layers of darker and lighter textures can give repetitive ground textures
a much more varied and realistic look.
Try to mark roads in hard rock and concrete, and rough terrain with uneven rocks and
vegetation textures. Add rocky textures to hillsides and cliffs, but be careful not to use vertical
textures – the last two textures in six-texture landscapes – on flat terrain as they will look
horribly stretched. Paint over such stretching with another texture and a narrow brush.
Once you have placed props to create forests and other dense vegetation, it can also help the
look of these forests if you apply darker textures underneath the trees so that there is no
bright texture shining through the boughs and leaves. In the same way, paint gravel or
concrete inside base areas and especially in front of hangars, vehicle bays and landing
zones. It just does not make sense for there to still be grass where wheels and hover fields
have ripped at the ground.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 29 of 89

Texture Erase tool
For those times when the ground looking worse after your work with the Texture Edit tool than
it was before, the Texture Erase tool will use your current brush to completely reset any
painted area to the default splat script look. This is less destructive than regenerating the
entire splat script, but it gets the job done quickly on those difficult vertical mountainsides.
Please note that “pressure” makes no difference while un-painting with this tool.

Placing and editing instances
All Instance edit tools deal with placing, selecting, moving, rotating, copying and deleting
instances. The seven tools related to this mode all have names that begin with “Instance” and
end in “Tool”. They are, in order from left to right on the tool bar: Edit, Delete, Copy, Grep,
Pick, Place and PlaceArea.
All instances have a position in X, Y and Z directions, as well as orientation values for X, Y
and Z. This orientation value can be visualised by holding down CTRL while placing or editing
an instance, or just clicking on the ground and holding down your left mouse button.
Remember that X is east to west, Y is north to south, and so an orientation of Y = 1 is an
instance “looking” due south, while Y = -1 is an instance pointed due north. This is all further
complicated by the fact that some instances, such as the BG_LightPole, extends in the
direction opposite to the orientation it is heading. When oriented due south, the horizontal bar
of this street light will be pointed towards the north.

Script components
Because adding Agents and Sounds will also add script components – PLAYER_AddAgent
and SCRIPT_AddSound commands respectively – it is good to have the Scripts dialog visible
while adding these types of instances. If you have not done so already, create separate
scripts for SOUNDS and different types of AGENTS, for example AGENTS_TURRETS,
AGENTS_VIRON, AGENTS_NSA and so on.
Agent and Sound script components will be added into the currently selected script, and
because it is not possible to move contents between scripts, it is best to display the script
dialog and select the script where you want these commands added before placing agents
and sounds. The Scripts dialog is also useful because Things require THING_AddThing
commands, and Cameras are used by TEAM_CameraSpline commands.

Instances dialog
As soon as any one of these tools is selected, the Instances dialog panel will appear, if it has
not been made visible already. This dialog contains two lists, four buttons, six checkboxes for
“Text labels”, a Rotation snap value combo box and seven more checkboxes for additional
options.

Available Instance Types
This list view contains four branches; one each for Props, Things, Sounds and Agents. By
selecting items from this list the designer can choose what type of instance to place on the
map. Thanks to this list, props, things sounds and agents can all be placed in the world using
the same tool: InstancePlaceTool. Only cameras and areas are placed with different
methods.

Instances
This list has six categories because it contains all instances that have been placed on your
map. The three buttons below this list can be used to rename instances, expand or collapse
the categories, and delete instances from the map.
Be aware that changing the name of an agent, sound or thing instance which have
corresponding Script components will destroy the link between the script command and
instance. This will result in an unresolved reference from the command, which then needs to
be connected to the renamed instance.
Double-clicking on instances in this list will let you manually edit the values for that instance.
By holding down the SHIFT key while double-clicking on an instance, the main window will
move to and focus on the instance that was double-clicked.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 30 of 89

Text labels
Check the boxes to make the names of each instance appear next to it in the 3D world
window. It can be very helpful to enable text labels for the type of instance you are currently
working with, cameras when creating camera splines, agents when giving orders or areas
when creating Enter Area triggers.

Rotation snap value
Instances can be rotated when using the Instance Edit Tool by holding down CTRL and
dragging the mouse. If SHIFT is held down as well, this rotation will “snap”, to even multiples
of this value. The default is 45 degrees, which means the selected instance can be rotated in
eight directions. If the snap value is changed to 90, the instance can face north, east, west
and south, and at 180 degrees snap value the instance can only face north or south.

Additional options
A list on the right side of the Instances dialog contains several options which affect the way
instances are placed on the map.

Lowest Y in radius
The first of the additional options is “Lowest Y in radius”. This option is helpful in making
certain that placed things and props are placed so that no part “floats” above the ground.
Without this option, “floating trees” are a common occurrence. Enter a percentage value in the
box to make XEd look for the lowest altitude in a smaller or larger area.
Example: A prop has a radius of 10 meters. If the box is checked, XEd will find the lowest y
value inside that area. Enter 50 into the box and XEd will search within a radius of 5 meters,
50% of 10 meters. Enter 200 and XEd will search within a radius of 20 meters, which is 200%
of 10.

Don’t select on placing
When a new instance is placed, that instance also becomes the currently selected item,
removing any previously made selection. Enabling this option, the new instance will not be
selected and your current selection will remain the same.

Random Rotate
All instances placed while this option is enabled will be rotated in a random direction, its X
and Z rotation values both randomized between -1 and 1. This option is very useful in placing
vegetation, junk and other things which should appear to have been placed more or less at
random.

Show occupancy grid
This option will make the occupancy grid generated by “gridded” instances visible. White tiles
mean all agents can pass, red means none can pass and black means only infantry can pass.
Only props can have occupancy grids, but not all do. A gridded instance can only be rotated
at even multiples of 90 degrees. Read more about it under the heading Occupancy grid and
slope maps.

Retain instance height
Without this option, any instance that is moved, or which stands on a portion of ground which
is raised or lowered, will be moved to the new height or altitude. If the “retain instance height”
option is enabled, all instances will stay at their current height in these cases. Regardless of
this option, all new instances will be placed on the ground, but can be raised or lowered by
using the Instance Edit tool, holding down SHIFT and rolling the mouse wheel up or down.

Use water level for instances
When this option is enabled, no newly placed instance will be placed below water. The
minimum Y value for instances will be the same as the water level. Instances can still be
lowered underneath the waves using the Instance Edit tool.

Override GetY
When this option is enabled, and a value is entered into the text box next to it, any moved or
otherwise edited agent will be moved to this height (Y value, altitude). This is even true for

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 31 of 89

instances placed on terrain where the height map is changed – the instances will snap to the
GetY override height instead of to the new terrain height.

Agents
Before placing agents, remember to bring up the Scripts dialog and select the script where
you want the agents to be created. This is most likely not the START script, because at the
time the START script runs, there are no PLAYERS present who can use these agents. The
exception would be agents which are intended to belong to PLAYER_NOPLAYER such as
neutral agents, gun emplacements and capturable vehicles.
Note that all placed agents will belong to PLAYER_NOPLAYER, which can be changed by
either double-clicking on the PLAYER_AddAgent command listed in the Script dialog. These
commands will be automatically named in a way that associates them to the agent instance
that was placed: When placing an agent named F1_jeager__99, the PLAYER_AddAgent
command could be named F1_jeager__99_add_agent__100 – the beginning of the name is
identical to the instance name, followed by “_add_agent” so as not to confuse the instance
and the command, and finally a second count, to identify this particular command.
The numbers placed on instances and script commands are a simple count from 0 and
upwards, and has no other use than to distinguish commands and instances from one
another. Instances and commands can be freely renamed as described in the section on
Naming conventions, but when renaming an instance it is very important to remember that
this will cause an unresolved reference in the related command. If F1_jeager__99 is renamed
to The_Sniper_Guy, then the command F1_jeager__99_add_agent__100 must be changed
so that it references this new name. While doing that, it might be appropriate to change the
name of the command as well, but remember to correct any references to this command in
triggers, Agent commands, AgentGroups and so on.
Agents can be freely placed, rotated, raised or lowered but any movable agent will
automatically be reset to their individual altitude once the game begins. Turrets and gun
emplacements will not, and can be made to hover or stick to a certain rotation value.
Warning: Do not place movable agents in positions they could not normally move to,
meaning do not place tanks inside forests or agents under water. In a worst case scenario,
this can crash the game.

Areas
Place an area in XEd by selecting the InstancePlaceAreaTool (quick key CTRL + Q) and
make a dragging click on the ground. With the mouse button held down, you can change the
radius of the area. Release the mouse button to complete the area. The area will be given a
numbered name, like Area__0 and so on. Rename it to something easy to remember, like
“Area_Enemy_Base_Vault”, “Area_Gold” or “Eldorado”. Note that you cannot press OK on a
rename if the name contains spaces.
Positions and areas are the same thing. The AGENT_MoveTo command uses areas as the
position the agent should move to, and the agent will move to the centre position inside the
area. When TRIGGER_TeamEnterArea uses the same area, it will consider the entire volume
of the area to be part of the trigger.
For practical reasons, it is best to place areas before the triggers and command which need
them. If you create the triggers first you will have to close the trigger editor, change to the
AreaPlaceTool and place the area before going back to double-click on the trigger or the
trigger’s unresolved reference and point it to the area. It is better to have all relevant areas
prepared beforehand. There is no problem at moving or resizing an area after triggers have
been connected, as long as you remember that they will be affected. If an area is removed
entirely after it has been used by commands, these commands’ reference to the area will be
unresolved, and must be connected to a new area or they will not work properly, or
Areas appear to be spherical in XEd, but this is merely a visual cue. In reality, all areas are
cylinders based on the outer radius of the visible sphere. So do not worry that airborne
vehicles could somehow avoid entering the area – as soon as the aircraft passes above the
outer perimeter of the area, it is considered to be inside.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 32 of 89

Areas can be freely placed anywhere on a map, but there is no point to rotating, raising or
lowering them. The former because a circle is always a circle, and the latter because the
sphere is actually a cylinder stretching from bottom to top of the world. The exception to free
placement would be Landing Zone and Victory Location areas: in these cases the central
point of the area must be accessible – white occupancy and green slope map, or the AI may
crash the game.

Cameras
Placing cameras is the easiest thing in XEd once you have learned how to move and look
around. Just position your view in the position and direction you would like to place a camera,
and click the “AddCameraPosition” button on the toolbar, or press F12.
Like props, cameras require no script counterpart in order to function, but neither do they
have any function until a script uses them. Cameras are the make-up of
TEAM_CameraSpline and many other camera commands. It can be very helpful to name
these cameras according to their use or position, such as CAM_overwall_1 or
CAM_Horizon_pan_2, so they will be easy to find in the list of all cameras.
Cameras can be freely placed, but moving and rotating can be done differently to all other
instances. Cameras can still be moved, raised, lowered and rotated much like all other
instances, but for cameras this is less intuitive. Instead, to move a camera, select it in the list
of Instances, move your view to represent the desired new position of the camera and click
the button “Set current camera instance to this” in the Instances dialog.

Props
Like areas, props require no additional script commands to be added and can therefore not
be moved or removed through scripts. They are just there, solid and static in the map from
beginning to end.
Props come in two distinct varieties: Gridded and non-gridded. The “grid” is the occupancy
grid which determines whether a prop affects the ability for agents to pass over or through it,
such as large buildings, clumps of forest and bridges. The resulting grid can be made visible
with the “Show occupancy grid” option.
In practical terms this means gridded props can only be rotated in increments of 90 degrees –
they can only be placed so that they point north, west south or east and never at any other
angles than these. Gridded props also “snap” to the grid in 6 meter increments, which is the
size of the grid tiles. The gridded props should not be placed so their occupancy grids
overlaps. This will cause odd pathfinding behaviour.
Props with no grid have none of these limitations, but do not affect the movement of agents
and so they must be very small so as not to look odd when agents pass right through them.
Typically these are small things like signs, grass, rocks, junk and other “cosmetic” props.
Aside from the limitations on gridded props, they can be placed at any height, rotation or
position, but also due to occupancy grid behaviour it is unwise to place props with white grids
(always passable) too near altitude drops – valleys, cliffs, drops and pits – as agents passing
over the white occupancy tiles will “float” at the same altitude as the prop itself. Be careful!

Sounds
A placed sound will create a SCRIPT_AddSound command in the currently selected script,
much like agents. This script can be started at any time and does not rely on such things as
players being connected, but it is still best to keep sounds in a separate script to keep track of
them. Thanks to this script command, sounds can also be removed through scripting while
the game is running.
Sounds appear like small blue boxes hovering above the ground, but are actually played in a
much larger radius, normally listed as part of the name. The sound Crickets_200 generates a
sound of crickets within a radius of 200 meters with the sound strongest in the central area
and weaker at a distance. Crickets_400 is the same sound, but with greater range. The actual
size of sounds is specified in the file sound/ambientsounds.juice. Try not to place too many
large-range sounds close to one another so that they overlap. Too many sounds will overload
the sound system so that some sounds are not heard.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 33 of 89

There is no point in rotating sounds, but their position is important and placing a sound above
or below the ground can have its uses. Remember that while playing, sounds are played
relative to the camera, and placing a sound above the ground in such a way that the camera
passes very close to it can have unexpected effects. Sounds can be raised, lowered and
moved with the Instance Edit tool, and will snap back to the terrain like props, things and
agents.

Things
The list of Things which can be places is identical to the list of Props, but the two have several
differences. Things cannot have any kind of collision or occupancy grid. Everything –
including bullets, agents and the player’s camera – will pass through things. The benefit of
Things is that they can be added and removed at will, and they can even be animated by the
command THING_SetAnimationState.
Although Things require the command THING_AddThing for them to be displayed in the
game, this command is not created automatically. First place the Thing instance in the world,
and then create a THING_AddThing command in the scripts where you want it to be created,
and link this command to the instance you have created. If you wish to remove, move or
animate the thing, you must refer to the THING_AddThing by name when doing so. Only the
THING_AddThing command refers directly to the Instance name.
Because things lack occupancy, they can be placed anywhere, at any altitude and in any
orientation without snapping.

2D Map
The 2D map can be used for a quick overview of your map. Invoke it by pressing the
"View2DMap" on your toolbar.
The default mode of the 2D map is the camera mode. In this mode you can move your
camera just by clicking with the LMB. The RMB is used to pan around in the map, and the
Wheel is used to zoom in and out. This behavour is the same in all three modes.
The zone mode enables you to move around your zones. See the zone wizard chapter below.
Finally, the playfield mode lets you change the playfield very easily. Just click and drag one of
the "corner balls" of the playfield (visible only in playfield mode) to change the size of your
playfield.

Ruler
The ruler is a very handy tool for measuring distances in the game world. Select the Ruler
tool. Then click and hold down your left mouse button on the ground to measure the distance
from that point to any other point on the map. When creating multiplayer maps it is very
important that the distances between important objectives are approximately the same for all
teams so that no team has an advantage over the other.

Wizard manager
The blue wizard can help you with tedious tasks, such as creating scripts and placing zones.
To invoke the wizard manager, click the wizard manager tool. This will bring up the wizard
manager, and select the skirmish wizard as default. The actions from mouse events in the 3D
view depends on which wizard is selected. See below for details.

Skirmish Wizard
The skirmish wizard creates scripts and settings for a multiplayer or skirmish map with the
press of a single button. Enter a name, a description and a maximum number of teams for
your map, and press the "Build template" button. The wizard will generate scripts according to
the model used in the MapViper tool. Add agents (such as turrets) to the "Turrets" script and
add sounds to the "Sounds" script.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 34 of 89

Zone Wizard
Use this wizard to place zones on your map. The wizard takes care of everything. Things,
areas, cameras, and basepositions are automatically added and tied together in a
scriptcommand. For normal use, the only things you have to decide are the zone type
(Landing zone or victory location), Initial owner and maybe the camera generation settings.
The default camera position setting will automatically generate a camera position 50meters
away from, and 50meters up from your zone, facing south. If you select the "Use current
campos" option, the cameraposition that you had when placing the zone will be used.
When the zonewizard is selected you will have a round blue cursor attached to your
mousepointer. This cursor symbolizes your zone, and it has the same radius as the finished
zone. A click with the LMB will place a zone using the current wizard settings. To move a
zone, turn to your 2D map. (Press the View2DMap button in youtr toolbar). Select the "Zones"
mapmode. You'll now see all your zones as icons in the 2D map. Click and drag to move
them around. To delete a zone, set the 2D map in camera mode, and delete the areas,
things, cameras, and commands that make up the zone manually.

Tips, Tricks & Troubles
There are many dangers to watch out for while creating maps in XEd. Turn to this section of
the manual if your map crashes and you do not know why.

Zones must be flat
Problem: The center square of any victory location or landing zone must be perfectly
passable. You can not place a blocking structure there, and the terrain cannot be so uneven
that it turns up as a red impassable block. Landing Zones are especially vulnerable, as units
are spawned from dropships here.
Reason: This problem has two reasons. The first is dropships. There needs to be room for the
units dropped to actually stand. A unit cannot be deployed in a red impassable area or inside
a building, and it can crash the game. The other problem is with the AI, who will calculate the
value of zones according to the absolute centre of it. This point cannot be unreachable. If it is,
the AI does not understand how it could possibly defend it. It will crash. We apologize for
these crashes, but there are good reasons for them.
Solution: Make sure there are no obstructing objects near the centre of your zones, and make
the ground flat enough for any unit to stand on it.

Don't delete zones with 2D map in "Zone" mode
Problem: XEd will crash if a zone command or an instance that is referenced by a such
command is deleted while the 2D map is in "Zone" mode.
Reason: Sloppy coding by me (Peen). The 2D map is trying to use deleted pointers.
Solution: Make sure the 2D map is not in "Zone" mode when deleteing zone related instances
or scriptcommands.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 35 of 89

The Basics of Scripting
Welcome to the Ground Control 2 Scripting Manual, the beginner’s guide to Massive
Entertainment’s level editor: “XEd” and script language: “Juice”. This document aims to give a
helpful, if not complete, insight into how the level design team at Massive Entertainment used
their tools to create the missions and maps in Ground Control 2: Operation Exodus.

Starting
The first step is always the most difficult. It is good to start with an idea of what you want to
create, but there are many things to keep in mind: We want to create a scripting structure that
is practical and logical, but flexible enough to handle changes.

START
Whenever you create a new map in XEd, there is only one script, and that is START. This
script will always be started as soon as the map is loaded into the game, before all players
have connected to the game, so this is our naturally given first step. Therefore, this script
must contain commands that need to be running before the players have entered the game,
such as weathers, things and sounds. The START script is also where all other scripts must
be started, normally with TRIGGER_AllPlayersConnected.

SOUNDS & THINGS
Because sounds and things, like agents, need a scriptcommand to be started, it is a good
idea to place all sound and some thing commands in separate scripts. Start these directly
from the START script, since they do not rely on any player or agent references.

PLAYERS_CONNECTED
It is useful to have a script act as a platform where you know that all players are in the game.
This goes both for single-player missions, cooperative missions and multiplayer missions. The
only time when it is not important to know that ALL players have connected, including
humans, scripts and AI players, would be a mission with only one player, and how much fun
would that be?
From the CONNECTED script, it is good to start UNITS and TRIGGERS scripts, because
agents cannot be created for a particular player until that player has connected. Similarily,
triggers cannot detect a player or agents belonging to that player, until then.
PLAYERS_CONNECTED is also the best place to start the music and cutscenes that should
play when the mission begins. If all scripts are started with SCRIPT_ActivateScript at the
same time, the game will pause for a significant moment before moving on. If the scripts are
spaced out with TRIGGER_Timer, the pause will be less significant, but the game’s
performance will suffer over a longer period of time.

ZONES
There’s really nothing stopping you from creating zones whenever you feel like it, but during
the development of Ground Control II, the standard procedure was to keep zones in separate
scripts. Often, at least two scripts were used, one for Landing Zones and one for Victory
Locations that are needed at the beginning of the map. Some maps have several different
scripts for zones that are activated at different points during the course of the mission. On
some maps, landing zones and victory locations are added once the player has reached
certain goals, or is given new objectives. Victory Locations are just a way to signify a ground
objective, after all.

UNITS (or AGENTS)
It can be very convenient to place all the agents that should be on the map when it starts, in a
separate script. Making several UNITS scripts can also be helpful, one for each player or
team. This script should then be started before any triggers, so that they can be used to
monitor the agents created in this script. To save performance, it can be meaningful to start
only small groups of agents at a time, especially if the agents are spawned during heavy
action. During Ground Control II, agents were only very rarely spawned over the course of the

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 36 of 89

game for two reasons: There is a performance hit whenever new agents are spawned, and
nobody likes enemies who come out of nowhere, unless they are demons from hell.

TRIGGERS
Another practical thing is to sort all the triggers needed at the beginning of a map into a
separate script. Preferably this should be started after all players have connected and after all
zones and agents have been created. Some typical triggers are timers that remind the player
of the map objectives, triggers that check if vital units are destroyed, or when a player controls
a certain number of Zones on the map. Triggers for such things would point to individual
EVENT scripts.

EVENTS
These are only really useful in a single-player map, or an objective-driven multiplayer map.
Events could be things like enemies reacting when the player takes over a zone, or a vehicle
complaining when it comes under fire. Events would also control in-game cinematic
cutscenes.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 37 of 89

Script START

{

 WEATHER_SetWeatherEffect set_default_weather

 {

 myNewWeatherType Default_Cloud_1

 }

 SCRIPT_ActivateScript start_ambient_sounds

 {

 myScript myInstances.myScripts.ambient_sounds

 }

 SCRIPT_ActivateScript start_zones

 {

 myScript myInstances.myScripts.zones

 }

 TRIGGER_AllPlayersReady All_Players_Ready

 {

 myTriggeredScript myInstances.myScripts.Players_Ready

 }

}

Script Players_Connected

{

 SCRIPT_ActivateScript Start_Agents

 {

 myScript myInstances.myScripts.AGENTS

 }

 SCRIPT_ActivateScript Start_Triggers

 {

 myScript myInstances.myScripts.TRIGGERS

 }

 SCRIPT_ActivateScript Start_Briefing_Event

 {

 myScript myInstances.myScripts.EV_01_CINEMATIC_1

 }

}
In this example, the START script is used to launch only commands which do not rely on
agents or players, such as setting the weather, creating sounds and setting up Zones. Then,
when all players have connected to the game, the Agents are created, then the Triggers and
finally the first cinematic sequence starts, to tell the story to the players.
Please note that when starting a many scripts at one time, using SCRIPT_ActivateScript
commands, and especially when creating many PLAYER_AddAgent commands, there will be

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 38 of 89

a certain “stutter” as your computer allocates memory and creates the agents. This is normal,
but it is good to plan the map start in such a way that this stutter does not affect gameplay.

Multiplayer
Creating a multiplayer mission is much easier, script-wise, than creating a single-player map.
The map will, most often, not have any agents on the map except the ones a player orders
with a dropship, and the map most likely has very few events. The important parts are:

START

ZONES
Victory in a multiplayer map is usually decided by setting the defeat conditions in
MissionStats. Deathmatch missions would have AllowNoUnitsDefeat or
AllowNoPresenceDefeat enabled, while VL missions would have AllowNoVLDefeat. What
these really mean is that “player is defeated when he has no units”, “player is defeated when
he has no presence (zones or agents)” and “player is defeated when he has no landing zones
(and an enemy has all of them)”. It’s confusing, but there is a very good reason for it to be this
way.
The START script waits for all players to connect, and then starts the ZONES script with
Landing Zones for everyone, and Victory Locations if you want them. That’s really all that’s
absolutely required to create a map. However, if you want to, you can develop the multiplayer
map by adding the following:

PLAYERS_CONNECTED

MAP_IS_SYNC_START

MAP_IS_DROP_IN

SOUNDS

TURRETS

WEATHER
After START, run PLAYERS_CONNECTED, and then from there start ZONES, SOUNDS,
TURRETS and WEATHER. This is only the most basic way to build, and there are many
ways to flesh out the details. Instead of using a single WEATHER script, you can make a
structure of RANDOM_ActivateScripts separated by TRIGGER_Timers that randomize
between different weathers. One such structure – Weather_Rain_Randomizer – is available
to “Import” into your scripts, with a button in the Scripts panel. However, because Juice
cannot handle dynamic links, you will have to connect the triggers to their scripts by hand.
The ZONES script can also be made more complex. To have random starting positions, do
not start the ZONES script. Instead, use the command SCRIPT_RandomAddZone, add all
landing zones to the myZones list and let this special command divide the zones among the
teams currently playing. You can also make two separate sets of Landing Zones, for example
ZONES_Dropin and ZONES_Synch. Then use SCRIPT_EvaluationBranch to detect if myFlag
MISSION_OPTION_ALLOW_DROPIN is set to 1. Set myTrueScript to ZONES_Dropin and
myFalseScript to ZONES_Synch. This way, you could make the landing zones used in dropin
non-capturable.
Turrets are agents. Leave them belonging to PLAYER_NOPLAYER, which is neutral. When a
player’s infantry enters the neutral turret, it comes under control of that player automatically.
Turrets spawn with full health, but you could use AGENT_Hurt or AGENT_Die so players are
forced to repair them before they can be used.

Single player
Maps for single player mode aren’t necessarily different from multiplayer maps, but the
missionstats setting myMissionType needs to be set to SINGLEPLAYER to sort the custom
map into the correct category.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 39 of 89

START

SOUNDS

PLAYERS_CONNECTED

ZONES

UNITS

BRIEFING

EVENT_01

EVENT_02

MISSION_COMPLETE

MISSION_FAIL
Just like in multiplayer, it is important to wait until all players have connected before starting
the real action. Singleplayer maps usually have some kind of briefing or in-game cinematic at
the beginning of the map, which should be started after the players have connected, but
before zones and agents.
Once the briefing is over, start the zones and the units scripts so that the players can start
playing the mission. Remember to place objectives on the map using the
OBJ_HumanObjective command, and markers on the minimap with
TEAM_AddMinimapMarker.
You might also want to have scripts for mission failure and success, using the command
SCRIPT_SucceedMission, which only needs one parameter for which team should win – all
other teams lose when this happens. You can then run these scripts when the super-
important allied unit is destroyed, or when the top-secret enemy weapon has been retrieved.
Take note, however, that SCRIPT_SucceedMission will have no effect if the MissionStats
setting NoScriptedVictory is enabled. The idea is that this setting can be used to make single
player and cooperative missions into mindless deathmatch games, or timed missions.

Cooperative games
A cooperative mission is built like a single-player mission, but with the thought kept in mind
that the friendly team can have more than one human player. Therefore it is important to use
TRIGGER_AllPlayersReady

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 40 of 89

Cutscenes and cameras

Script CINE3_ENTER

{

 TEAM_SetCameraWidescreen TEAM_SetCameraWidescreen__0

 {

 myTeam TEAM_1

 myWidescreenFlag TRUE

 }

 SCRIPT_ActivateScript SCRIPT_ActivateScript__CINE3_WHITEOUT_B

 {

 myScript myInstances.myScripts.CINE3_WHITEOUT_B

 }

 TEAM_SaveCameraPosition TEAM_SaveCameraPosition__CINE3

 {

 myTeam TEAM_1

 }

 TRIGGER_PlayerAction CINE3_CutSceneSkipper

 {

 myPlayer PLAYER_PLAYER1

 myAction SKIP_CUTSCENE

 myTriggeredScript myInstances.myScripts.NULL

 }

 TRIGGER_TriggerIsTriggered TRIGGER_TriggerIsTriggered_Skip_CINE3

 {

 myTriggeredScript myInstances.myScripts.CINE3_EXIT

 myNeededNumberOfTriggeredTriggers 1

 myTriggers

 {

 TRIGGER_PlayerAction* CINE3_CutSceneSkipper
myInstances.myScripts.CINE3_ENTER.CINE3_CutSceneSkipper

 TRIGGER_MessageBoxClosed* MessageBoxClosed_Last
myInstances.myScripts.EV_07.MessageBoxClosed_Last

 }

 }

}
The code above is a typical script for starting a cutscene. The camera switches to
widescreen, a script which causes the “white flash” effect is started, the current camera
position is saved, and as you can see the TRIGGER_PlayerAction named
CINE3_CutSceneSkipper waits for PLAYER_PLAYER1 to perform the action
“SKIP_CUTSCENE”. The trigger itself only points to a script named “null”, which contains
nothing, but it is also being monitored by a TRIGGER_TriggerIsTriggered which will activate

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 41 of 89

the script CINE3_EXIT if either one of the triggers CINE3_CutSceneSkipper or
MessageBoxClosed_Last is activated.
In CINE3_EXIT, several commands are collected which change these settings back.
Message boxes will stop playing and be removed, another white flash will appear, the
widescreen mode will be disabled and the saved camera position will be restored. As you can
see, cinematics are a lot of work.

Naming conventions
It does not matter what you kind of naming scheme you decide to use for your scripts,
commands, triggers and instances, but it always helps to name them something other than
their default names. If you are creating a zone, make sure all items involved contain the name
of the zone they contribute to. Naming the camera, base position, thing and area LZ1_cam,
LZ1_base, LZ1_thing and LZ1_area is one way of doing it, but TEAM_AddZone__1_LZ_1 is
okay too.
Proper renaming will help you keep track of all the things you use and need while scripting,
and although it can take a lot of time to rename several dozen agents to something that
signifies what corner of the map they are in, it does save you a lot of grief once you start
changing the layout of your map or give orders to these agents.
The same thing goes for scripting events and setting up triggers. If a timer counts down from
20 minutes and then launches event number five, calling it Timer_20m_EV05 will let you
easily identify it when you want to use SCRIPT_KillTrigger or TRIGGER_TriggerIsTriggered
in conjunction with your original timer. The more commands and triggers you have, the more
important this is, and because you cannot always know how complex your map is going to be
down the road it is best to acquire the renaming habit before you need it.

Tips, Tricks & Troubles

The “Null” script
Create a script called “Null” or “Nothing” or “dummy”, and point all your unresolved script
references to that script. Do not put anything important in it, but you could place a
DEBUG_DebugText command with a simple message like “NULL!” or “The Null Script has
been called instead of the unresolved reference it once was”. Then, whenever a trigger or a
condition is intended to not actually start another script, perhaps because you have an
IsTrigger watching it or because that condition option should lead do no action but to remove
the Conditional. This will clean up your list of unresolved references so that you can focus on
the unresolved references that you really forgot to link to something important.
All Cameras will also have an unresolved reference for myFocusInstance, but do not try to
create a dummy instance for it to look at, unless you do want all your cameras looking at the
same exact plant. Just ignore the unresolved references from cameras.

Preparation is key
Place the areas, cameras and agents you are going to use in scripting before you start
making script commands. That way, once you start scripting you can just connect all the
command’s options to existing instances. If you do not, you will have to close the command,
place the things you need, and then double-click to edit the command after you have done
that. This is a cause for many problems when the designer forgets to return and edit the
script. Prepare what you want to do before doing it.

Names cannot have spaces
Problem: This was one of the first problems discovered in the Map Editing and Mod Making
forums at forum.massive.se. If a map contains an agent or script name with a space in it, the
game will crash, and even XEd will refuse to open the file.
Reason: In the Juice code, space is used as a “delimiter”, a hard line between a command, a
name, and the next name or command. If you add a space to these names, the first part will
be interpreted as the actual name, and the rest of the name will be interpreted as code.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 42 of 89

Because you rarely name your object after an actual command, most often this will just crash
the game.
Solution: Use underscores “_” instead of spaces in names for your agents, scripts and
commands. Be especially careful when editing your scripts with an external text editor.

Reference targets must exist
Problem: Triggers that never fire, actions that never take place. Why is the
Special_Truck_Agent not detected by my trigger when the trigger is specifically looking for
that agent? Why does my new agent never spawn to the player I specified?
Reason: When creating a new agent, the PLAYER who owns it must have connected to the
game, or there will be no player to give the agent to, and the agent will not spawn. Similarily,
a trigger cannot be created to wait for an agent that hasn’t been spawned yet, or whose
player was missing, preventing the agent from spawning.
Solution: Be very careful with the order in which you start scripts, or actions. Wait for players
to connect, then create agents for those players, and then any actions or triggers that depend
on these agents and players. Alternatively, use triggers that wait for PLAYER_ANY or for
TEAMS instead of specific players, and use actions that refer to CONTEXT.AGENT or
AgentTypes instead of specific agent instances.

Script Reference

Introduction to Juice
By definition, Juice is not a script language. It is a data definition language, much like XML.
This chapter focuses on the use of map scripts to control the flow of events in a mission.
Map scripts are stored in the [MapName]Instances.juice file in your map’s folder. Inside this
file, we find myInstances.myScripts and myInstances.myInstances. myScripts is where
commands are executed and triggers are started, whereas myInstances is where the 3D
coordinates and types of all things, props cameras, areas and other instances are stored.

Commands and parameters
myScripts is further divided into several scripts. START is the first one, and is always started
as soon as the server has loaded the map. The structure of a script is very simple:

Script START

{

}
Between the two curly brackets, commands are listed. Similarily, a command lists its
parameters between curly brackets. Even a command without parameters has these
brackets.

SCRIPT_ActivateScript SCRIPT_ActivateScript__Sound

{

 myScript myInstances.myScripts.Sound

}
The command SCRIPT_ActivateScript above only has one parameter, named myScript. This
command’s myScript contains the full name of the script that will be started immediately.

References
Once a command is placed in a script, it is instantiated from a type and receives a name and
location: TRIGGER_AllPlayersReady__0 placed inside the START script will be referred to
as myInstances.myScripts.START.TRIGGER_AllPlayersReady__0 if another command
references it. The reference itself will be named to what command it points to, so a reference
has three values:

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 43 of 89

PLAYER_AddAgent* F1_Marine__1
myInstances.myScripts.UNITS.F1_Marine__1

This parameter was found in an AGENT_Hurt command. It signifies a reference to an
instance of the type PLAYER_AddAgent, the reference is named F1_Marine__1, the script
command is inside the UNITS script and the PLAYER_AddAgent is named F1_Marine__1.
The reference does not need to have the same name as its target, but it makes a reference
easier to follow for the human reader. By double-clicking on a reference in XEd, the target can
be changed but the name of the reference will stay the same the same. This can be very
confusing for the level designer, and so it is much preferred to replace the reference with a
new one with a new name.
Something that is very important to remember when creating references in a trigger or action,
is that the target of the reference must already exist. For example, it is obvious that you
cannot heal an agent before it has been created. It is not equally obvious that you cannot
setup a trigger to wait for an agent, if that agent has not been created yet. Be very, very
careful about this.

Context system
The context system can be confusing to learn at first, but it is key to creating many advanced
gameplay mechanics. Using “Affectors” and context objects, the level designer does not have
to refer to a specific agent, player or team to give Acquisition Points, Victory, new agents,
health or damage. Triggers can set TriggerAffector and actions can set ActionAffector to
CONTEXT instead of SPECIFIC. With this done the action or trigger will affect whatever
agent, player or team is current stored into CONTEXT. See also the chapter on Triggers.
If an agent activates a trigger, that Agent’s identification is saved into CONTEXT. This agent
can now be referred to as CONTEXT.AGENT, the player who owns the agent is saved to
CONTEXT.PLAYER and the team the player belongs to is now the CONTEXT.TEAM.
Depending on the type of Trigger, the Context can be more or less detailed. Some triggers
save only to CONTEXT.AGENT, while others save all values and some save no data at all.

Full CONTEXT
The triggers listed below update all context types - CONTEXT.AGENT, CONTEXT.PLAYER
and CONTEXT.TEAM - when they are activated. Scripts started by any of the triggers below
can be used to use commands on teams, players, agents and types of agent.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 44 of 89

TRIGGER_AgentTypeEnterArea

TRIGGER_AgentTypeHaveKilled

TRIGGER_AgentTypeLeaveArea

TRIGGER_AgentTypeUnderAttack

TRIGGER_AgentTypeWasKilled

TRIGGER_AgentsEnterArea

TRIGGER_AgentsHaveKilled

TRIGGER_AgentsLeaveArea

TRIGGER_AgentsUnderAttack

TRIGGER_AgentsWereKilled

TRIGGER_AnyOtherPlayerEnterArea

TRIGGER_AnyOtherTeamEnterArea

TRIGGER_PlayerEnterArea

TRIGGER_PlayerHaveKilled

TRIGGER_PlayerLeaveArea

TRIGGER_PlayerUnderAttack

TRIGGER_TeamEnterArea

PLAYER and TEAM
The following two triggers update the PLAYER and TEAM value of CONTEXT when they are
triggered but do not change CONTEXT.AGENT.

TRIGGER_PlayerConnected

TRIGGER_ZoneTakenByPlayer

TEAM only
These two triggers update CONTEXT.TEAM to the team which triggered them, but changes
no other CONTEXT values.

TRIGGER_NumberOfZonesTakenByTeam

TRIGGER_ZoneTakenByTeam

No CONTEXT
These triggers do not update the current CONTEXT at all.

TRIGGER_AllPlayersReady

TRIGGER_CampaignFlagSet

TRIGGER_CampaignFlagNotSet

TRIGGER_Timer

TRIGGER_TriggerIsTriggered
What this means is that it is uncertain what the contents of CONTEXT will be in any script
started by TRIGGER_Timer and TRIGGER_TriggerIsTriggered. Most likely it will be the last
used actual CONTEXT. For example, if a TRIGGER_TriggerIsTriggered depends on two
TRIGGER_AgentEnterArea and starts a script named DEFEND, it would be safe to assume
that CONTEXT in DEFEND will still be the CONTEXT saved by the AgentEnterArea trigger
which fired last. However, since you can never be sure of this, it is best to not assume it.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 45 of 89

Context Example
The following example contains the victory conditions for MP08 - Silent Hills. The script
CONDITIONS_WIN is started as soon as possible, but not before the ZONES script, since the
TRIGGER_ZonesTakenByTeam trigger needs to reference the zones created inside it.

Script CONDITIONS_WIN

{

 TRIGGER_ZonesTakenByTeam
TRIGGER_ZonesTakenByTeam_TEAM_ANY_0

 {

 myTriggeredScript myInstances.myScripts.WIN

 myTeam TEAM_ANY

 myAllZonesFlag TRUE

 myZones

 {

 TEAM_AddZone* VL1 myInstances.myScripts.ZONES.VL1

 TEAM_AddZone* VL2 myInstances.myScripts.ZONES.VL2

 TEAM_AddZone* VL3 myInstances.myScripts.ZONES.VL3

 TEAM_AddZone* VL4 myInstances.myScripts.ZONES.VL4

 TEAM_AddZone* VL5 myInstances.myScripts.ZONES.VL5

 }

 }

}

Script WIN

{

 SCRIPT_SucceedMission SCRIPT_SucceedMission_CONTEXT_TEAM_1

 {

 myTeam CONTEXT.TEAM

 }

 }
The CONDITIONS_WIN script contains only one trigger, which waits for any team to capture
all of the listed zones. When that happens, the trigger fires and starts the script WIN. The
team which caused TRIGGER_ZonesTakenByTeam_TEAM_ANY_0 to fire is now saved to
CONTEXT.TEAM. Therefore, in the WIN script, a SCRIPT_SucceedMission action can now
be used to give victory to the team which has taken all of the Zones on this map.

Script command listing

Common command attributes
These are some of the attribute types that are used by more than one command.

AgentRefList
This parameter is a list of references to agents. It is most commonly used to list a
number of agents who you want to give an order, or inspect with a trigger, or blow up,
or something like that. These lists can also contain groups, created with the
GROUP_AgentGroup command. The agents in the list must exist when the reference
is created. In other words, if you have a script for agents and one script for triggers, the

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 46 of 89

TRIGGERS script must be started after the AGENTS script if some triggers depend on
agents inside the AGENTS script. Or, if the agents and their orders are in the same
script, the AGENT_AddAgent commands should be near the start of the script, and
orders or triggers referring to them must be near the end.
ActionAffector: SPECIFIC, CONTEXT
Whenever a parameter of the ActionAffector type exists, the parameter decides whether
the action should affect the specific agent / player / team listed in the action – usually in
a AgentRefList or PLAYER_AddAgent reference – or if it should treat the current
CONTEXT agent / player / team. When context is selected, any list becomes
completely unnecessary and the action will instead affect who last caused the current
script to start – “CONTEXT”.
TriggerAffector: ANY, SPECIFIC, CONTEXT
This parameter decides who can activate this trigger. Either any agent what so ever, or
the specific agents listed in the trigger, or the agent currently in the CONTEXT stack –
the agent which most recently activated a trigger starting a script.
Flag: TRUE, FALSE
Used by commands that can both activate and deactivate a function. The
unimplemented function AGENT_SecondaryMode used this to distinguish between
enabling the secondary mode (when myFlag = TRUE) and disabling it (when myFlag =
FALSE).
TriggerRefList
A list of references to triggers, this is used by only three different functions:
SCRIPT_KillTriggers, TRIGGER_TriggerIsTriggered and CONDITION_IsTriggered.

General commands

DEBUG_DebugText
Outputs a text string to the debug file. Useful for finding out if a specific script was started, or
for adding credits to a map.

TEXT myText
A string containing the text to be printed to the debug file. This string is not localized
and can therefore be changed at will. It is only saved in the *Instances.juice file.

WEATHER_SetWeatherEffect
Changes the weather. Some weathers require a transition time of 10 seconds before
changing the weather again

GUI_HelpEnableWidget
Shows a flashing tutorial GUI (Graphical User Interface) component in the in game GUI. The
“Widget” name must exist in the HelpScreen tree in the guis_ingame.juice file. These are
usually just blinking boxes overlapping the user interface, for example Slot1 through Slot9 for
the order palette. Widget names are case sensitive. This command was only used during the
tutorials for the following widgets: FormationArrow, MegamapArrowDwn, DropshipBuyArrow,
DeployArrow, UpkeepArrow, UpgradeArrow, UpgradeCargoArrow, DropshipselectArrow,
SupportweaponArrow, Slot3, Slot8, Slot9. The “MegaMapArrow” is for the Objectives button,
which previously called up a large scaled-up map all over the screen.

TEXT myWidgetToEnable
This is the name of the EXP_Plate component from guis\gui_ingame.juice which you
want to enable (display).

GUI_HelpDisableAll
This is a special GUI command only used in tutorials. This command hides all currently
flashing tutorial GUI components.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 47 of 89

SCRIPT commands
Often, these are commands that do not relate to any particular area of the game, or which
couldn’t be sorted under another category, but also commands that deal with the immediate
starting of scripts, ending the game or playing around with Triggers.

RANDOM_ActivateScript
This randomness command executes one script from a weighted list of scripts. The probability
for each script is normalized and weighted against the probabilities for other scripts.

RandomOptions myRandomOptions
This is a little complex. A “RandomOptions” item (note the “s”) contains several items
called “RandomOption”, which in turn consist of:
Script* myTriggeredScript
This is a reference to the script that will be triggered if this RandomOption is the lucky
one.
NUMBER myWeight
This is a weighted value, the chance of this particular RandomOption coming true.
“Weighted” means that a value of 2 is twice as “heavy” as a value of 1, but a value of 4
is twice again as important.

RANDOM_ActivateScript RANDOM_ActivateScript__Weathers

{

 myRandomOptions

 {

 RandomOption myScriptclassEntry

 {

 myTriggeredScript myInstances.myScripts.WEATHER_1

 myWeight 60

 }

 RandomOption myScriptclassEntry

 {

 myTriggeredScript myInstances.myScripts.WEATHER_2

 myWeight 30

 }

 RandomOption myScriptclassEntry

 {

 myTriggeredScript myInstances.myScripts.WEATHER_3

 myWeight 10

 }

 }

}
In this example, we can add up the weights, 60+30+10 to 100 so that the weights themselves
can be considered percentages. Therefore, we can easily see that WEATHER_1 is most
likely to start; WEATHER_2 is the second most likely, while WEATHER_3 only has a 10%
chance of starting when RANDOM_ActivateScript__Weathers is executed. There is no vital
need for Weights to add up to 100, but it makes for easier calculations.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 48 of 89

SCRIPT_ActivateScript
This action runs a script instantly, inside the current script. When a script is started with the
ActivateScript command, the contents of the myScript target will be executed inside the same
script as the ActivateScript command.

Script* myScript
This is the script which will be executed immediately inside the current script.

Script DEBUG_ONE_THREE

{

 DEBUG_DebugText DEBUG_DebugText__One

 {

 myText One

 }

 SCRIPT_ActivateScript SCRIPT_ActivateScript__Sound

 {

 myScript myInstances.myScripts.DEBUG_TWO

 }

 DEBUG_DebugText DEBUG_DebugText__Three

 {

 myText Three

 }

}

Script DEBUG_TWO

{

 DEBUG_DebugText DEBUG_DebugText__Two

 {

 myText Two_Inserted

 }

}
Because the ActivateScript starts its myScript immediately, when the script above runs, the
debug file will produce something like this:

DEBUG: One

DEBUG: Two_Inserted

DEBUG: Three
Using this command, one script could start two other scripts after one another, and still have
triggers or commands after the ActivateScript command that affects objects inside those other
scripts. For example, if we inside the script DEBUG_ONE_THREE use ActivateScript to start
UNITS and then TRIGGERS, the scripting inside TRIGGERS could affect agents inside the
UNITS script.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 49 of 89

Because of this, the contents of CONTEXT used in DEBUG_ONE_THREE can be used also
in DEBUG_TWO, since DEBUG_TWO takes place inside DEBUG_ONE_THREE.

SCRIPT_AddSound
This command is necessary for the game to play positional sound effects. It is automatically
added to the active script each time a sound instance is placed in the Xed 3D view. The name
given to this command is the name used to remove the sound later. If you remove this
SCRIPT_AddSound command, the sound will no longer be heard, but the sound will still have
a position and a soundID attached to it, so that you could create a new SCRIPT_AddSound
command to re-start it.

XSoundInstance* mySound
This is the sound instance that has been placed in the world. You can find the sound
and its name under Instances in the Instances window, or you could enable Text Labels
for sounds and find it in the world. Double-click the instance to see what kind of sound it
is, if the name does not explain it. If it helps, you could imagine that AddSound “starts
playing” a sound “lying around” in the 3D world.
NUMBER myBaseFrequencyInHz
Normally this number should be 0, to use the default sound frequency, but it can be
used to change the pitch of a sound, creating variations on any sound effect. The
default should be 22050, but depends on the sound, so normally a value of 44100
would play the sound one octave higher than it was recorded.

SCRIPT_AddSound electro_relay_150__3_add_sound__4

{

 mySound myInstances.myInstances.electro_relay_150__3

 myBaseFrequencyInHz 0

}
The command above is the part of a positional sound that you can see in the myScripts
section of the Instances file. It tells the game engine to start playing the game, which sound to
play and what frequency to use, where 0 is the actual frequency of the sound file. The Further
down in the Instances file, under the myInstances section, you will find the sound instance
itself:

XSoundInstance electro_relay_150__3

{

 myPosition

 {

 myX 1583.360718

 myY 68.970139

 myZ 1202.008179

 }

 mySoundID electro_relay_150

}
Here you can see where the sound is positioned in the game world, and that it is of the type
electro_relay_150, defined in the file sound\ambientsounds.juice. It is entirely possible to start
a new SCRIPT_AddSound with a reference to an XSoundInstance which was “Removed”, or
even start two AddSounds on the same XSoundInstance.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 50 of 89

SCRIPT_RemoveSound
Removes a 3D positional sound added by SCRIPT_AddSound. The SCRIPT_AddSound
command must have been started before the SCRIPT_RemoveSound can remove the sound.
You could see it as if SCRIPT_AddSound starts playback of a sound source
(XSoundInstance) placed in the world, and SCRIPT_RemoveSound stops playback of the
sound.

SCRIPT_AddSound* mySound
This is a reference to the SCRIPT_AddSound you want to stop playing.

SCRIPT_EndMission
Not used, but it should work. This command ends the mission completely and abruptly,
dumping everyone who played it to the after-game screen. This can be confusing because it
appears identical to being kicked from the game, or the server crashing. This command takes
no parameters.

SCRIPT_EvaluationBranch
This command runs one script if the conditions are true and another script if they are false.
The conditions that are available vary from comparing campaign flags to checking if triggers
have been triggered. More information about conditions can be found under the
TRIGGER_ConditionBranch entry and in the “Conditions” section.

Script* myTrueScript & Script* myFalseScript
These are references to the two scripts which could be started if the Conditions are
fulfilled or not fulfilled, respectively.
Conditions myConditions
See TRIGGER_ConditionBranch.

SCRIPT_EvaluationBranch SCRIPT_EvaluationBranch__47

{

 myTrueScript myInstances.myScripts.Artillery_Lost

 myFalseScript myInstances.myScripts.Artillery_Survives

 myConditions

 {

 CONDITION_IntCampaignFlagLessThan myScriptclassEntry

 {

 myFlag Artillery_Alive

 myValue 5

 }

 }

}
In the above example, only a single condition is used. If the campaign flag “Artillery_Alive” is
less than 5, the condition will be True, and the script Artillery_Lost will be started. If not, the
script Artillery_Survives is started instead.
It is possible to leave either myTrueScript or myFalseScript empty in order for nothing to
happen in either case, but it is better to create a script without content and name it something
telling, like DEAD_END or DUMMY or NULL, and then point the “dead” entry to it.
The reason this command is named SCRIPT instead of TRIGGER, is because it does not
wait for anything to happen: The command will immediately evaluate if the Conditions are true
or false, and will start the TrueScript or FalseScript instantly depending on the results. This is

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 51 of 89

different from Triggers, which wait for their condition to become true and then activate their
target script.

SCRIPT_KillTriggers
This command kills its listed triggers. It is not recommended to kill a trigger from the script that
trigger has started, which is like sawing off the tree limb you are sitting on and can cause
some serious problems. The triggers must have been created, but not activated, for a Kill to
be successful. A killed trigger will never become activated. Killing a trigger that has already
been activated has no effect, and the IsTriggered functions will still detect it as triggered. See
also the chapter on Triggers.

TriggerRefList myTriggersToKill
This is a list of references to the triggers that should be killed.

SCRIPT_RandomAddZone
This is a special command for randomizing the ownership of zones. The TEAM_AddZone
commands you wish to randomize must exist, but not have been started. It is recommended
that these TEAM_AddZone commands are placed in a script that must not be started by any
command. Only the myTeam ownership of each zone is randomized between the teams
available on the map, all other values remain the same as before.
By “teams available on the map”, we mean the teams that are listed among the players in
MissionStats

SCRIPT_RandomAddZone SCRIPT_RandomAddZone__0

{

 myZones

 {

 TEAM_AddZone* LZ_1 myInstances.myScripts.ZONES.LZ_1

 TEAM_AddZone* LZ_2 myInstances.myScripts.ZONES.LZ_2

 }

}
When using this command, you do not have to actually start the script that has the zones
inside it. It is very special in this respect, because under normal circumstances the commands
inside a script that is not started would never be executed. This command is very special in
that way.

SCRIPT_SetGameOverTie
Not used. Unknown if it works. Unknown what happens if it does work. The command was
intended to end the mission without announcing a winner. The command takes no
parameters.

SCRIPT_SucceedMission
This command sets the winning Team. The affected team wins the match and all other teams
automatically get the “mission failed” screen, because they lost.

Team myTeam
The team that wins. Keep this between TEAM_1 and TEAM_8. Who knows what will
happen if you try TEAM_NOTEAM?

SCRIPT_SlowMotion
Not implemented. Ignore this.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 52 of 89

TEAM commands
These commands are all relative to one specific team. The name of the parameter that
specifies the team can vary, but myTeam is the most common.
Available teams are TEAM_1 through TEAM_8, TEAM_NOTEAM which is no team,
TEAM_ANY which is any team at all, and of course CONTEXT.TEAM. TEAM_ANY but
should only be used for triggers, not for commands.

Common attribute
Team myTeam
This is the team affected by the command, or the owner of the object created by the
command.

TEAM_AddMinimapMarker
This command adds a marker in the in-game minimap for an entire team. It uses an area for
location and scales the size of its marker depending on the size of that area. The marker will
blink (“flash”) the number of times specified.

LOCTEXT myToolTipText
This is a string of text which will be displayed when the mouse pointer hovers over the
marker. Keep this short and sweet.
NUMBER myNumberOfFlashes
This is how many times the marker should flash before becoming solid. For the single
player game in Ground Control II this was 1000, to always draw attention to important
objectives. This is just a matter of not confusing the player, and having 10 different
objectives all blinking at the same time would also be confusing.
FILE myMinimapIconFile
This is the marker that will be seen in the minimap. Use ui/skins/map_icons.dds for
the default icon used in the single-player game. See also the TEAM_AddZone and its
identically-named value for other markers.
XSphereInstance* myPosition
This is a reference to the area which will be used for position and size of the marker. On
a max-sized map, a size of 40 is good, but the smaller the map, the smaller the zone
should be, because the minimap is always the same size even when the map size
changes.

Remember that this command does not place an object in the game world, only on the map.
To place a visible marker in the game world, place a “Thing” of the type Objectives_Marker.
See notes on the commands THING_AddThing and THING_RemoveThing.

TEAM_RemoveMinimapMarker
This command is used to remove a minimap marker which is no longer necessary, for
example when an objective has been completed. There is no myTeam necessary for this
command, because it handles TEAM_AddMinimapMarker commands, which are already
team-specific.

TEAM_AddMinimapMarker* myMarkerToRemove
This is a reference to the TEAM_AddMinimapMarker to be removed from view. It must
have been added before removing it.

TEAM_AddZone
Adds a zone, which could be either a Victory Location (VL) or a Landing Zone (LZ). Also take
a look at the commands TEAM_RemoveZone, PLAYER_AiRemoveZone,
OBJ_AddObjective_Zone and SCRIPT_RandomAddZone, as well as the triggers
NumberOfZonesTakenByTeam, ZonesTakenByTeam and ZoneTakenByPlayer.
Notes on Zone sounds: All sounds reside in the gc2localized.sdf file, in the directory sound/
ingame/ general_feedback/. The sounds are sorted by Faction: F1 is the NSA and F3 is
Viron. There are no feedback sounds for the Empire.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 53 of 89

The problem here is that Zones pay no attention to what faction the player is. Instead, the
designer must choose if a zone uses the NSA or Viron voices to declare that a zone has been
attacked or changed owners. In the GCII single player campaign, this was never a problem
because in the first half the player uses NSA units and in the second half the player uses
Viron units. In multiplayer, NSA is the default, and so the F1_ sounds are used.

myZoneMarker
The zone uses a “thing” for the representation in the 3d world. This thing will show
different colors depending on if the zone is neutral or belongs to a player. VL_thing,
LZ_thing and LZ_UC_thing are normally used. Others could work.
myArea
The area used for the location and size of the zone. Normally this area is 47 distance
units in radius or at least as big as the marker. Sometimes this area could be made big
enough to represent a larger tactically important area.
myBasePosition
This area is the base position of the drop ship headed to this zone. The standard is to
place these 1000 units away from the zone, and at least 500 units outside the visible
playfield. The most important thing is to have the same distance between the zone and
base position for all LZs on a map.
myCamera
This is a camera position overlooking the Zone. This is the camera you can snap to
using the W key in the game.
myStartingTeam
This is the team who owns this zone from the start. This should be TEAM_NOTEAM for
a neutral zone, but never TEAM_ANY. CONTEXT.TEAM can be given zones, too. As
long as the myCapturableFlag is set to TRUE, another team can take over the zone
from whoever owns it first.
myIsCapturableFlag
If this is set to FALSE the zone cannot automatically change team from its starting
team. Use for LZNA (not available) and for zones intended to change ownership
through script commands.
myIsLandableFlag
If this flag is set to TRUE the zone acts as a Landing Zone (LZ), VLs should be set to
FALSE.
myCaptureAPAward
Each time the zone is captured by a team, a sum of AP can be given to that team.
myTimedApAward
This is the amount of AP that the zone will yield each time the
myApAwardIntervalsInSeconds timer reaches zero.
myApAwardIntervalsInSeconds
A looping timer that gives myTimedApAward to the team that owns the zone.
myTimeToCaptureInSeconds
The time it takes for the zone to change from neutral to the TEAM that currently
occupies the zone.
myTimeToLooseInSeconds
The time it takes for the zone to change from a TEAM to neutral, when the zone is
occupied by enemy units. Pardon the spelling error, but it is too late to change now.
myCautionFactor
This special AI variable affects how the AI units ordered to this zone will behave. A low
value will make the units suicidal and a high value (max 1) will make the units use their
default behaviour.
myMinimapIconFile

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 54 of 89

This is the marker that will be seen in the minimap. Map icon files reside under the
/ui/skins folder in the gc2data.sdf. Use vl.dds for Victory Locations, lz.dds for Landing
Zones and lzna.dds for non-capturable Landing Zones.
myCaptureSound
This is the sound played when the zone belongs to your team. The defaults are
F1_objectives_LZcaptured.wav for Landing Zones and F1_objectives_VLcaptured.wav
for Victory Locations.
myLostSound
The sound played when your team loses the Zone and it becomes neutral. The defaults
are F1_objective_LZabouttobelost.wav for Landing Zones and
F1_objective_VLabouttobelost.wav for Victory Locations.
mySomeoneCapturedItSound
The sound played when another team captures the Zone. The defaults are
F1_objectives_LZlost.wav for Landing Zones and F1_objectives_VLlost.wav for Victory
Locations.
myAboutToLooseSound
This sound is never used. Its default value is objective_neutral.wav, “Location under
fire”.

To create a zone, first place all the necessary parts. For a Landing Zone, first choose a
suitable location. Place one thing of the type LZ_thing. Rename it to LZ_1_thing. Then place
one Area with a radius of 47 on top of the LZ_thing. Rename he area to LZ_1_area. Now
place a “base position” area. Rename this area to LZ_1_base. Finally, place one camera
overlooking the Zone and rename it LZ_1_cam.
Then create a TEAM_AddZone command in the desired Script. Set myLandableFlag to
TRUE, and point the unresolved references to the thing, the areas and the camera you just
added. Rename the TEAM_AddZone to LZ_1 and you are done.
To make a Victory Location instead, set myLandableFlag to false and forget about myCamera
and myBasePosition.

TEAM_RemoveZone
Removes a TEAM_AddZone created earlier. The Zone will be removed from the game. This
can be useful in cases where a zone which was tactically important is no longer important, or
if a Landing Zone becomes too dangerous for anyone to land on. Because this command
refers to a TEAM_AddZone which is already team specific and might have changed teams
since it was created, this command does not require a myTeam value.

TEAM_AddZone* myZoneToRemove
This is a reference to the TEAM_AddZone to be removed. The zone must have been
created before it can be removed.

TEAM_ApRewardOrPenalty
Use this command to give Acquisition Points (AP) to a team, or take AP away from a team.
The AP is then divided among members of the team based on their current maintenance
percentage. Be aware that taking AP away from a team has not been thoroughly tested, and
may fail or crash the game. What if the team already has zero AP?

NUMBER myApRewardOrPenalty
This is the amount of AP applied to the team. A positive number will give AP to the
team; a negative number will take AP away.

TEAM_CameraPositionTrackAgent
Not used, but it works. The camera’s position will be locked to a spot and will look directly at
the agent specified. This creates a “security camera” perspective on the game. Use
RestoreCameraPosition or a short CameraSpline to restore camera control to the player.

XCameraInstance* myCameraRelativePosition

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 55 of 89

This is the position from which the camera will look towards the designated Agent.
DECIMAL myTransportTimeInSeconds
This is the time it will take the team’s camera to be transported to the new position, in
seconds.
PLAYER_AddAgent* myAgent
This is the Agent which the camera should focus on. The PLAYER_AddAgent
command must have been started, and must not have been destroyed or removed,
before the camera command.
ActionAffector myAffector
Because this command deals with both the TEAM controlling the camera, and the
Agent the camera should focus on, this switch can be used to track a CONTEXT agent
instead of the specific agent above, just as in AGENT commands.

TEAM_CameraShake
This command shakes the camera. Values above 1 cause extreme shaking. Some people
would expect 1 to mean 1%, others expect 1% to be 0.01 – really an easy mistake.

NUMBER myIntensityPercentage
This is the intensity of the shaking. 1.0 means 100% and this is an integer value.
NUMBER myDurationInSeconds
This is the duration of the shaking. Because shaking is annoying, please do not do it for
longer than a few seconds at a time.

TEAM_CameraSpline
This command can be used to create a “spline” that the camera traverses using a list of timed
waypoints. A spline is a curved line made up of several points and each point is a camera
position. Because of this, it is best to place the camera positions you intend to use for the
camera movement before you create the TEAM_CameraSpline command to tie them all
together.

NUMBER myStartingFovInDegrees
This is the field of vision used at the start of the camera spline. The default is 90.
NUMBER myEndingFovInDegrees
This is the field of vision used at the end of the camera spline. The default is 90. By
changing the field of view during a spline, a zoom-like effect can be attained.
FocusInstanceRefList myFocusInstance
Change this if you want the camera to focus on something – a Thing, Agent or Prop –
while in motion. Leave it as an unresolved reference if you do not.
WayPoints myWayPoints
Every list of WayPoints contains several items of “WayPoint”, and each WayPoint is
defined by the following values:
XCameraInstance* myCameraInstance
Each point on a camera spline is a camera position. This links to the camera position
you wish to use for this point in the spline movement.
DECIMAL myTransportTimeInSeconds
This is the time it will take the camera to move from its current position to this
WayPoint.
DECIMAL myBias
This value changes the amount of curvature on either side of the waypoint. Changing
this value up or down between -1 and 1 will make the spline curve more sharply before,
or after this waypoint.
DECIMAL myTension

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 56 of 89

This value defines the tightness of the curve at this point of the spline. If this value is
higher than 0.0 the curve becomes sharper. At 1.0, the camera will move in straight
lines between waypoints. If the value is lower than 0.0, the curve will be very rounded.

TEAM_ChangeSoundtrack
This command plays a soundtrack for all players in the team. Music and ambience mp3 files
are available in gc2data.sdf under the Music/ directory.

FILE mySoundtrack
This is the mp3 song to start playing. The default is amb_music_01.mp3 from the
Music/ directory. Play silence.mp3 to stop playing music or ambience.

TEAM_ChangeZoneOwner
Never used in GCII, but it should work. This command changes the zone owner to a new
team. It could be used for objective-based changing of zone ownership. Instead of a myTeam
value, this command has a value named myNewTeam, for clarity’s sake.

TEAM_AddZone* myZone
This is a reference to the Zone which should change owners. The TEAM_AddZone
command must have been created, and not removed, when this command is run.

TEAM_FadeToColor
The screen fades between the current camera view and a one-coloured screen, using the
timer.

XColor myColor
This is the colour value used for fading to or from. It is in the RGB format for Red,
Green and Blue. If all three values are zero, the colour is black and if all values are 255,
the colour is white.
FadeType myFadeType
This defines if screen should fade INTO a colour or OUT of a colour.
FadeTo myFadeToScreenType
This determines if the screen should end with a WIDESCREEN image, or restore the
image to NORMAL, non-widescreen, “pan & scan”.
DECIMAL myFadetimeInSeconds
This is how long the fade should take, in seconds.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 57 of 89

Script CINE1_ENDFADEBEGIN

{

 TEAM_FadeToColor TEAM_FadeToColor__25

 {

 myTeam TEAM_1

 myColor

 {

 myR 255

 myG 255

 myB 255

 }

 myFadeType IN

 myFadeToScreenType NORMAL

 myFadetimeInSeconds 1.500000

 }

 TRIGGER_Timer TRIGGER_Timer__ACTIVATE_FINALFADE

 {

 myTriggeredScript myInstances.myScripts.CINE1_EXIT

 myTimeInSeconds 1.4

 }

}

Script CINE1_EXIT

{

 TEAM_FadeToColor TEAM_FadeToColor__27

 {

 myTeam TEAM_1

 myColor

 {

 myR 255

 myG 255

 myB 255

 }

 myFadeType OUT

 myFadeToScreenType NORMAL

 myFadetimeInSeconds 3.000000

 }

}
The above example shows the end of a cinematic cutscene in Ground Control II. In it, we can
see that the image first starts to fade from normal into white during one and a half seconds.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 58 of 89

After 1.4 seconds a second fade begins and during three seconds the image fades out from
white to a normal view. This is the “white flash” effect seen after all cinematic cutscenes in
Ground Control II.

TEAM_FlashPositionInMinimap
This command places a blinking marker in the in-game minimap. Uses an area for location
and scales the marker depending on the size of that area. Flashes the number of times
specified. This command is similar to the command TEAM_AddMinimapMarker, but is easier
to use. A flashing position cannot be removed in the way a minimap marker can, but it will
vanish once it has flashed as many times as it was intended to.

NUMBER myNumberOfFlashes
This is how many times the marker should flash before being removed. Please note that
this is a difference from TEAM_AddMinimapMarker, which becomes solid after flashing.
Do not flash this too many times, because it cannot be removed.
FILE myMinimapIconFile
This is the marker that will be seen in the minimap. Map icon files reside under the
/ui/skins folder in the gc2data.sdf. Besides the markers mentioned for
TEAM_AddMinimapMarker, map_icons.dds and ping.dds can be useful markers. The
former is a rather ugly bluish and thick circle, while the latter is a nicer-looking pulsating
circle useful for highlighting positions or events on the map.
XSphereInstance* myPosition
This is a reference to the area you wish to use for the size and position of the marker.

TEAM_ForceTopDownCamera
This command switches between forcing the top-down RTS camera and allowing the Ground
Control type camera. Do note that for some reason this command does not accept a myTeam
attribute. Probably, it affects all human teams, forcing them to use the top-down RTS camera.
Please do not use it.

Flag myForceFlag
Set this value “true” to force the standard RTS camera. Set it “false” to return control
over this setting to the human players.

TEAM_PlaySound
Plays a sound that is heard for all players on that team regardless of where they are at the
time. This is useful for cinematic explosions, for example. See also PLAYER_PlaySound.

FILE mySoundFile
This is the sound to be played. One commonly used sound is
sound/interface/newobjective1.mp3, which is played whenever a new objective
marker is placed on the minimap in the Ground Control II single player campaign.

TEAM_SaveCameraPosition
Use this command to saves the current camera view for all players in a team. The command
TEAM_RestoreCameraPosition can be used to restore this saved position at a later time. This
is very useful for cinematic cutscenes. This command takes no parameters besides myTeam.

TEAM_RestoreCameraPosition
This command restores the camera view previously saved by the
“TEAM_SaveCameraPosition” command. This can be used after cinematic cutscenes to
restore the view used before the cutscene began. This command takes no parameters
besides myTeam.

TEAM_SetCameraOrientation
Uses the current camera position and only modifies the orientation, the direction of the
camera. Transition time between the camera orientations can be specified.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 59 of 89

TEAM_SetCameraPosition
Uses the current camera orientation and only modifies the position that the camera should
move to. Transition time between the camera positions can be specified.

TEAM_SetCameraWidescreen
Switches between wide screen mode and normal combat view. When in wide screen mode
the entire GUI will be hidden so that no unit markers or even the mouse arrow will be visible.

TEAM_SetCameraView
Sets the camera to a previously saved camera position. Both the cameras orientation and
position will be used. Transition time between the current view and the new view can be
specified.

User interface commands
Normally, message boxes become queued, which means that one will play after the other,
even if several message box commands are started one after the other without any timers
between them. To terminate such a queue, cut it short, there is the
TEAM_PurgeMessageQueue command. The TRIGGER_MessageBoxClosed trigger can be
used to see if a message box has ended or been closed.
The first three commands will all show a message box on screen. These three have several
attributes in common:

LOCTEXT myText
This is the text which will appear in the message box. The text is localized for each
country.
TEXT myCharacter
This is the “talking head” that will be visible on the left hand side of the message box.
These characters are read from messagebox_characters/characters.juice in the xed.sdf
file. If you do not want any talking face at all, NSA_Pause_Picture is a good choice.
FILE myAudioFile
This is the sound file to be played along with the message box, in mp3 format. For the
single-player campaign, these messages were stored in sound/ingame/mission and
its subdirectories based on mission numbers.

A messagebox character and an audio file can be selected. If several message boxes are
triggered, they will be placed in a queue and will be played, and closed one after the other.
The script command TEAM_PurgeMessageQue will empty this queue. The trigger
TRIGGER_MessageBoxClosed will fire when a specific instance of the below message box
types has been closed.

TEAM_ShowAutomaticMessageBox
The message box will be visible for as long as the audio file is playing. When the sound file
ends, the message box closes automatically, and the next one in the queue starts playing.

TEAM_ShowButtonMessageBox
The message box will be visible until the player clicks on the message box button. Use this to
use a button for skipping forward in scripting. Please note that this was never used in Ground
Control II and so it might not work.

TEAM_ShowTimedMessageBox
The message box will be visible for a specified duration. After the time has run out, the box
will vanish, its sound file will be silenced and the next message box in the queue will start
playing. If the timer is longer than the sound file, the talking head will keep chewing air without
sound until the time runs out. Do not let that happen.

DECIMAL myTimeToShowInSeconds

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 60 of 89

This is how long the message box will be visible and audible, in seconds.

TEAM_PurgeMessageQueue
This command stops the current message box, and removes all queued messages. The
corresponding sound file will be silenced. Any triggers waiting for these message boxes to be
closed will not fire. This is very important to understand. Do not use a
TRIGGER_MessageBoxClosed as the only way for an event to start, if you are aware that the
message could be erased by a PurgeMessageQueue command. This command only requires
a myTeam value.

PLAYER commands
These commands act on players. Therefore, all player commands have a parameter for which
player to affect.

Common attribute
Player myPlayer
This is the player, from PLAYER_PLAYER1 to PLAYER_PLAYER8, who will be
affected by the command. PLAYER_ANY should not be used for commands, but
CONTEXT_PLAYER can be. See the subject “Context system” in the “Script Command
Reference” chapter.

The three PLAYER_AI commands have a parameter named myAIPlayer instead of myPlayer.
It works in the same way but must refer to a player controlled by an AI. There is no code-
based check for this, so the designer must keep track or check the MissionStats settings.

PLAYER_FreezeInput
This command only works on AI players. If the AI is “frozen” it will give no orders to its agents
until it is unfrozen. Orders that have already been issued will continue to be in effect. In the
start of some missions it is recommended to freeze the AI, give objectives, assign units to the
different objectives and then unfreeze the AI, especially if you plan on having a cinematic
introduction scene with scripted agents. If the AI is not frozen during this cinematic, it will
“start playing” while the human players are still watching the introduction.

Flag myFlag
TRUE = Freeze, FALSE = Unfreeze.

PLAYER_AIChangeDecisionTree
This command makes the AI switch purchase trees. These trees are resident in its brain file,
located in the CommanderAI directory. Very few of the existing AIs have more than one such
purchase tree, so using this command indiscriminately will have no effect. The topmost tree is
the default.

FILE myDecisionTreeFile
This is the name of the new buy tree. This name is stored in the myNodeName attribute
in the JUICE file for the CommanderAI used by the AI player. The standard name is
OvsDBranch.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 61 of 89

Script Freeze_AI

{

 PLAYER_FreezeInput PLAYER_FreezeInput__0

 {

 myPlayer PLAYER_PLAYER4

 myFlag TRUE

 }

}

Script ACTIVATE_VIRONS

{

 PLAYER_FreezeInput PLAYER_FreezeInput__2

 {

 myPlayer PLAYER_PLAYER4

 myFlag FALSE

 }

 PLAYER_AIChangeDecisionTree PLAYER_AIChangeDecisionTree__3

 {

 myDecisionTreeFile active

 myPlayer PLAYER_PLAYER4

 }

}
In the above example, PLAYER_PLAYER4 was “frozen” at the start of the map in the script
Freeze_AI. No command was used to set the purchase tree, because the topmost purchase
tree in the c1m11_vir.juice AI file is empty. The second purchase tree in this file is named
“active”, and as PLAYER_PLAYER4 is “unfrozen” using PLAYER_FreezeInput with the
FALSE flag, the command PLAYER_AIChangeDecisionTree is used to switch to the “active”
tree. If the level designer runs another AIChangeDecisionTree command with
myDecisionTreeFile set to “passive” instead, the AI would stop buying units.

PLAYER_AiChangeEngageSuccessProbability
With an EngageSuccessProbability of 1, the AI will want 100% chance of success before it
attempts an attack. The AI considers a force twice as powerful as the enemy to be a
guarantee for success. With an EngageSuccessProbability of 0.5, the AI will want a
calculated chance of success of 50% before attacking. Therefore, setting very large values
here will prevent the AI from ever attacking an enemy. The parameter myCautionFactor can
be set on certain objectives to change the Engage Success Probability differently for different
objectives.

DECIMAL myNewEngageSuccessProbability
The new engage success probability value for myAIPlayer.

PLAYER_AiRemoveZone
This command removes an existing VL or LZ from an AI’s awareness. The AI will have no
knowledge of this zone, but could still accidentaly capture the zone while moving over it. The
zone must have been created before the AiRemoveZone command runs, so placing the
command instantly after the TEAM_AddZone commands can be practical.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 62 of 89

Possibly, the AI must also have connected to the game, so waiting for a
TRIGGER_Player_Connected or TRIGGER_AllPlayersReady may be a good idea.

TEAM_AddZone* myZoneToRemove
This is the TEAM_AddZone that should be removed from myAIPlayer’s awareness.

Script ZONES

{

 TEAM_AddZone VL1

 {

 //removed to save space//

 }

 TEAM_AddZone VL4

 {

 //removed to save space//

 }

 PLAYER_AiRemoveZone PLAYER_AiRemoveZone_VL1

 {

 myAIPlayer PLAYER_PLAYER4

 myZoneToRemove myInstances.myScripts.ZONES.VL1

 }

 PLAYER_AiRemoveZone PLAYER_AiRemoveZone_VL4

 {

 myAIPlayer PLAYER_PLAYER4

 myZoneToRemove myInstances.myScripts.ZONES.VL4

 }

 PLAYER_AiRemoveZone PLAYER_AiRemoveZone_Enemy_Ignore_VL1

 {

 myAIPlayer PLAYER_PLAYER6

 myZoneToRemove myInstances.myScripts.ZONES.VL1

 }

}
In the above example, the Victory Locations VL1 and VL4 are created, and then the AI
PLAYER_PLAYER4 removes both zones from its awareness, while PLAYER_PLAYER6 only
ignores VL1 and will still be aware of VL4.
The biggest benefit of this command is that the AI will completely ignore the zone, and will not
fight to capture it. This way, a particular AI can be told to focus on one area of a map and not
try to take over the entire map. Making an AI forget zones in this manner can also save
performance on maps with many zones, or AIs.
The value myNumberOfActivePlatoons in the CommanderAI files specifies how many
platoons the AI can divide its forces into and thus how many active missions the AI can take
on. Normally there is one active mission per zone, plus any additional objectives given to the
AI. Skirmish and multiplayer AIs have 12 active platoons, while single-player AIs have fewer,
sometimes as low as four, or even one. By using AiRemoveZone, a 4-platoon AI can still be a
formidable opponent on an 8-zone map, focusing on a few zones and “forgetting” the others.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 63 of 89

PLAYER_MoveCameraToLZ
If the player owns an LZ the camera will travel from its current location to the camera location
that is bound to the LZ currently in use. The time in seconds will be used for how long the
transition will take.

DECIMAL myMoveTimeInSeconds
The number of seconds the camera will take to move from its current position to the
position of the LZ’s myCamera. Zero is recommended, because the movement could
cut straight through objects in the way.

PLAYER_PlaySound
This command plays a sound to a player. The path used has its root in the sound folder. This
sound will only be played once, and will be played directly to the player; it will not be placed
anywhere in the world as an object. Any sound in the game can be used, if you find it.

FILE mySoundFile
This is the relative path to the WAV sound that should be played. In-game sounds
reside in the “sound/ingame” directory.

Script CINE3_Explosion

{

 PLAYER_PlaySound PLAYER_PlaySound__BOOOOOM

 {

 myPlayer PLAYER_PLAYER1

 mySoundFile sound/ingame/noise/largeexplosion1.wav

 }

 THING_SetAnimationState THING_SetAnimationState__ImpFIRE

 {

 myThing myInstances.myScripts.things.Prison_0

 my4LetterAnimationState FIRE

 }

}
This Example is from the Single-player mission 23, or number 11 in the Viron Campaign. This
cinematic event plays an explosion sound for PLAYER_PLAYER1 and changes the animation
state of a Prison building to an animation where it explodes. As you can see, the animated
Thing was added in a script named “things”, and has the name Prison_0. Now that I think
about it, this specific explosion should have used a TEAM_PlaySound rather than
PLAYER_PlaySound. If it had, ALL cooperative players would have heard the noise.

Agent commands
Most of the AGENT commands only work on script players, with a few exceptions such as
Die, Remove, Heal or Hurt.

Common attributes
AgentRefList myAgents
This is a list of (references to) agents you want to affect with the command. Agents in
this case are PLAYER_AddAgent, PLAYER_AiAddAgent or GROUP_AgentGroup
commands.
ActionAffector myAffector

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 64 of 89

This is used to decide if the agent command affects the specific agents listed in
myAgents, or if it should affect the agent(s) currently stored in the CONTEXT variable.
See the Context heading above for more information.

PLAYER_AddAgent
This command adds an agent instance to the game. The name of the created command
instance is then used as a reference to that particular unit. Because this command is added
automatically whenever an agent is placed in XEd, you should never have to create this
yourself. You will need to double-click these commands once they have been created, to
change the owner.

Player myPlayer
This is the player who owns the agent. Neutral agents such as gun emplacements and
radar buildings belong to PLAYER_NOPLAYER.
XAgentInstance* myAgent
This is the actual instance in the world that will be used for this agent. You can find
these in the Instances tree in the Instances window. You could change this reference,
but it would only cause confusion. Better to create a new PLAYER_AddAgent for every
Instance instead.

PLAYER_AIAddAgent
Similar to PLAYER_AddAgent, this also forces the agent to an objective. Therefore, myPlayer
must be an AI player. The agent will be stuck to the objective until it removed. The best way
of doing this is to place the agent normally, and then replacing the automatic
PLAYER_AddAgent with a PLAYER_AiAddAgent to the same myPlayer and AgentInstance.

ObjectiveRefList myObjective
This is a reference to the OBJ_AddObjective command that the AI Agent will be
ordered to follow. The OBJ command must already exist for this to work.

GROUP_AgentGroup
With this you are able to define a list of agents that you later can use as a reference. You only
have to make the reference to the agent group. The group has no impact in the game, but can
be very useful in scripting. You can send orders, set triggers or use script commands affecting
the group as a whole instead of adding the individual units every time. AgentRefLists can link
to both AGENTS and GROUPS.
This is very useful during scripting, before you have decided exactly how many agents will be
on the map. Instead of listing all the involved agents in every agent command and agent
trigger, create a Group of the agents you wish to use, and refer to that group whenever you
give orders or create triggers. If you find you have too many agents, or too few agents, just
change the agents listed in the group instead of changing every single trigger and command
you created.

AgentGroup myAgentGroup
This is a list which can contain references to PLAYER_AddAgent and
PLAYER_AiAddAgent script commands.

PLAYER_ChangeAgentsOwner
This command changes the owner (Player) of a list of agents. Turrets should revert back to
NOPLAYER.

Player myNewPlayer
This is the new owner of myAgents. It can contain PLAYER_AddAgent,
PLAYER_AiAddAgent and GROUP_AgentGroup. Adding a GROUP_AgentGroup is just
like adding all the agents it contains.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 65 of 89

AGENT_Die
Instantly kills all the listed agents displaying a damage effect of the specified type. Agents
must have been created when this command is run, or it will have no effect on the agents
once they spawn.

DamageType myDamageType
What type of damage should be used to kill the agents? Most are logically named,
except for Alien, which is a little weird. This only changes the type of effect used when
the agent is killed – the agent will die in all cases.

AGENT_EnterBuilding
Tells the a list of agents to enter a specified building. The Agents listed in myAgents
need to be chosen carefully, as only agents with the Resident parasite can enter
buildings and other props. XEd lists all agents for this command, making no distinction
between those with or without the parasite. Parasites are added to agents in the file
unittypes.juice in the /units directory available from the xed.sdf.
XPropInstance* myBuilding
This is a reference to the building prop that the agents should enter. Only enterable
buildings are listed
Quadrant myEntryQuadrant
East, west, south or north. This decides which side of the building the agents should
occupy. This will work regardless of how the building has been rotated – north is always
north.
Props are made able of harbouring agents by having a mySlotFile value defined as a
valid file with the .slot extension, in its definition. Props are defined partially in the file
GlobalPropTypes which resides under the XEd directory, in the xed.sdf file, but also in
the file which corresponds to the terrain type used. For example, props in battleground
maps are defined in the file battleground.juice, also in the XEd directory. This is the
definition for the Prop BG_Block_House_02:

XPropType BG_Block_House_02

{

 myVisualModel
landscapes/battleground/buildings/residential/bg_block_house_02/bg_30m_ruin_
02.mrb

 myShadowModel
landscapes/battleground/buildings/residential/bg_block_house_02/bg_30m_ruin_
02_shadow.sdw

 myLightType SHADOWMAP_AND_LIGHT

 myUnitsAreVisibleThroughMeFlag 0

 myGridFile
landscapes/battleground/buildings/residential/bg_block_house_02/bg_30m_ruin_
02_grid.grid

 mySlotFile
landscapes/battleground/buildings/residential/bg_block_house_02/bg_30m_ruin_
02_slotpos.slot

 myGraphicalImportance ALWAYS_VISIBLE

}

AGENT_ExitBuilding
Orders the agents listed in myAgents to exit the building they are currently occupying. If they
are not inside any building, nothing will happen. This action takes no other parameters.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 66 of 89

AGENT_EnterContainer
This action orders a list of agents to enter another agent that is “enterable”. In order for an
agent to be capable of entering such an agent, it too must be prepared by having the parasite
named Containable. Any agent with this parasite can be containedby any other agent which
has the Container parasite. However, all agents will be listed as available for both
AgentRefLists in this command.
Giving an enter order into a non-enterable agent will have no effect, nor will an order given to
agents that cannot enter other agents. Enterable agents for infantry are: Turrets, large radar
agents, APCs, engineer vehicles, Covinus, Architectus, Great Corruptor and Contaminator
Copter. The only vehicle another vehicle can enter is the NSA Transport Copter.

 PLAYER_AddAgent* myContainer
This is the “container” the agents are ordered to enter. When selecting, all agents will
be listed including agents incapable of entering another agent.

Agents with Containable parasites with myContainerType 0 can only enter Agents with an
Container parasite set to the same value. There is no limit to how many different types of
Containable and Containers there can be. In Ground Control II, there was only
myContainerType 0 for infantry fitting into APCs, and myContainerType 1 for tanks and other
vehicles fitting into the NSA Transport Copter.

Container APC 8

{

 myCapacity 8

 myClaimableFlag 0

 myContainerType 0

 myHidePassengersFlag 1

}

Containable CanBeTransported

{

 myContainableType 1

}
This is part of the myParasites portion of the F1_Assault_APC definition. The agent has a
Container parasite intended for type 0 agents, meaning infantry in this case. The myCapacity
flag determines how many other units it can carry at the same time, and the
myHidePassengersFlag determines if the agents vanish from view (as in the case of APCs) or
if they remain visible (as with the Transport Copter, and the Flintstones’ car). The last value,
myClaimableFlag, is primarily used for turrets. With this flag enabled the agent will remain
neutral until another agent enters it, when it will change teams to that of the agent who
entered it.
As you can see, the Assault APC also has a Containable parasite named
“CanBeTransported”, for clarity’s sake. It is myContainableType 1, meaning that the NSA
Transport Copter could lift it.

AGENT_ExitContainer
Tells the specified agents to exit the container (APCs, Turrets) they are currently occupying. If
they are not inside a container, nothing should happen. Still, it is good to be aware that this
might have unexpected results, as the action has not actually been tested. This action
requires no other parameters.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 67 of 89

AGENT_Heal
This action restores myAmount of health to the specified or context agent(s), up to their
maximum (original) health.

NUMBER myAmount
This is the amount of health regained by myAgents.

AGENT_Hurt
This is the inverse of AGENT_Heal. The action will remove myDamage amount of health from
all agents specified.

NUMBER myDamage
This is how much damage will be detracted from myAgents current health. Detracting
more health than they currently have will kill them. All agents lose this same amount of
health.
DamageType myDamageType
Specifies what type of damage is used to harm the agents. This decides the visual
effect displayed on the agent when it takes damage. Available damage types are:
ALIEN, ANTI_PERSONNEL, ANTI_TANK, CHEMICAL, ENERGY, FRAGMENTATION,
MACHINE_GUN and MISSILES.

AGENT_MoveTo
This command issues a move command to all scripted agent(s) listed. The order requires a
target Area to exist. The move command will be targeted at the centre of the area specified. It
is not recommended to give such an order to more than a few units at once as they will circle
around the center position of the area, all trying to fit in the same spot. Instead, give one
move order to each agent involved and the result will look much better.

XSphereInstance* myPosition
To give the order, there must be a target point for the agents to move to. Areas are
used for this. You can give a move order to any area, as long as it is reachable and the
center is not blocked. You could order agents to move to a Landing Zone’s area, for
example.

AGENT_Remove
Removes all agents listed from the game without triggering a kill.
TRIGGER_AgentsWereKilled will not start because of this command and no score changes
will be generated for the removed agent(s). This is useful for removing agents when they are
no longer needed as objectives, for example. To save performance, it is still recommended
that the level designer uses SCRIPT_KillTriggers to deactivate any triggers connected to the
removed agents.

AGENT_SetFireBehaviour
This action sets the fire behaviour for a list of agents. This command has an unreliable effect
on human-controlled agents – their agents’ behaviour will change, but the change will not be
visible in the user’s GUI.

FireBehavior myBehaviour
This value specifies the agents’ new behaviour to FREE_FIRE, HOLD_FIRE or
RETURN_FIRE mode. In FREE_FIRE mode, the agent will fire on any enemy in range.
In RETURN_FIRE mode, the agent will fire at any enemy who has damaged the agent.
In HOLD_FIRE mode, the agent will only fire upon enemy units it has been directly
ordered to attack.

AGENT_SetMoveBehaviour
This action sets the move behaviour for the listed agents. The command was never used in
the single player campaign, but it should work. It might suffer from the same UI problems as
AGENT_SetFireBehavior when used on HUMAN-owned agents.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 68 of 89

MoveBehaviour myBehaviour
Possible values are FOLLOW_TARGET, where the agents will pursue any enemy
encountered, and HOLD_POSITION, where the agents will follow their existing move
orders (or lack thereof) and never move to own to attack the enemy by their own
volition.

AGENT_SecondaryMode, AGENT_SetEnabled, AGENT_SetIndestructable,
AGENT_AttackAgents, and AGENT_AttackArea
These commands were removed or not implemented because they would have taken a long
time to implement correctly.
To make agents indestructible, spawn an INVULNERABILITY agent from the agent list, give it
to the relevant player / team and remove it when you want to return the player to mortality.
Please note that although the effective radius of an INVINCIBLE barrel is quite large, it is not
enough to cover the entire map from only one corner of it. As long as the barrel is placed near
the centre of a map, or at least near the action, it should cover all relevant agents.
To make agents attack the enemy, move them to an area with hostile agents nearby and set
the agents to FireBehavior FREE_FIRE.

Campaign flags
Despite the name, campaign flags only persisted throughout a mission, including savegames.
They do not carry over between missions due to a conflict with how savegames were
implemented. Also see the triggers CampaignFlagSet and CampaignFlagNotSet, as well as
the Conditions dealing with campaign flags.

Common attribute
TEXT myFlag
Both Int (integer number) and Str (text string) campaign flags have names in plain text.
The first time a Set-command is used for a specific campaign flag name, the campaign
flag is created. This name is then used to change, check and remove the campaign
flag’s contents. Any flag that has been created, but not removed is “set”.

There are also a few hard coded campaign flags which can be used to check game settings,
victory conditions and winning team. In most cases, 1 means yes and 0 means no.

MISSION_OPTION_ALLOW_DROPIN Is drop-in enabled?

MISSION_OPTION_IGNORE_SCRIPTED_DEFEAT Can script commands cause victory?

MISSION_OPTION_WIN_ON_ALL_VL Do players win by taking all VLs?

MISSION_OPTION_LOSE_ON_NO_LZ Do players lose without an LZ?

MISSION_OPTION_LOSE_ON_NO_UNITS Do players lose without units?

MISSION_OPTION_LOSE_ON_NO_PRESENCE Do players lose without presence?

TEAM_n_HAVE_UNITS Does TEAM_n still have units?

TEAM_n_HAVE_PRESENCE Does TEAM_n still have presence?

MISSION_OPTION_WIN_TEAM Which team number has won? If no
team has won yet, this flag is not set.
If the game is a tie, it is 0 (zero).

The meaning of “presence” is when a team still has any ability to fight back and return to the
map to make a difference. A team does not lose “presence” until it has no units, owns no
zones on the map, or cannot afford to land any units. Here is one example used in many
multiplayer maps:

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 69 of 89

Script START

{

 SCRIPT_EvaluationBranch SCRIPT_EvaluationBranch__0

 {

 myTrueScript myInstances.myScripts.MAP_IS_SYNC

 myFalseScript myInstances.myScripts.MAP_IS_DROPIN

 myConditions

 {

 CONDITION_IntCampaignFlagEquals myScriptclassEntry

 {

 myFlag MISSION_OPTION_ALLOW_DROPIN

 myValue 0

 }

 }

 }

}

Script MAP_IS_SYNC

{

 SCRIPT_RandomAddZone SCRIPT_RandomAddZone__2

 {

 myZones

 {

 TEAM_AddZone* LZ1_cap myInstances.myScripts.zones_random.LZ1_cap

 TEAM_AddZone* LZ2_cap myInstances.myScripts.zones_random.LZ2_cap

 }

 }

}

Script MAP_IS_DROPIN

{

 SCRIPT_RandomAddZone SCRIPT_RandomAddZone__3

 {

 myZones

 {

 TEAM_AddZone* LZ1 myInstances.myScripts.zones_random.LZ1

 TEAM_AddZone* LZ2 myInstances.myScripts.zones_random.LZ2

 }

 }

}

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 70 of 89

In the START script, a SCRIPT_EvaluationBranch is used to determine whether the
campaign flag MISSION_OPTION_ALLOW_DROPIN is set to 0. If it is, that means this is a
“synch start” game. If the flag is NOT 0, it must be 1, and this is therefore a drop-in mission. In
drop-in missions it is important for Landing Zones to always be available so that a player who
connects later on in the game will always have a landing zone.
The two scripts MAP_IS_SYNC and MAP_IS_DROPIN will then activate two different sets of
Landing Zones. In the sync start case, the zones LZ1_cap and LZ2_cap, which are both
capturable, will be used. In the drop-in case, LZ1 and LZ2 will be used, which are not
capturable. This behaviour is controlled by the value myIsCapturableFlag on the
TEAM_AddZone command.
See also individual headings for SCRIPT_EvaluationBranch, SCRIPT_RandomAddZone,
TEAM_AddZone and the chapter on Conditions.

DATA_SetIntCampaignFlag
This action sets an integer campaign flag to a numeric value. If the flag does not exist, it will
be created and set to the value specified. Please note that setting an integer campaign flag to
0 (zero) will mean that it is set, but contains 0 (zero). This can be confusing.

NUMBER myValue
This is the value that the new Integer campaign flag will be set to.

DATA_SetStrCampaignFlag
This action sets a string campaign flag to the specified text content. If the campaign flag name
does not exist, it will be created, and then set to myValue.

TEXT myValue
This is the text string that the campaign flag will be set to. It can contain spaces, but
quote marks may be a bad idea.

DATA_ChangeIntCampaignFlag
This action modifies the specified integer campaign flag with a positive or negative number.
For example, using 1 as the amount will increase the value by one. Using -2 as the amount
will decrease the value by two.

NUMBER myAmount
This is the integer value that will be used to modify the integer campaign flag.

DATA_RemoveCampaignFlag
This action removes a campaign flag regardless of integer or string type. The campaign flag
will no longer be set. This command only takes the myFlag parameter.

Objective commands
Objectives are the orders given to human players to let them know how the map should be
played, but there are also several objectives which control specific AI behaviour.
When given to a human player the short description will appear on the left side of the in-game
screen. The long description is used for more extensive information that will only appear when
the player views the objective screen.
The AI believes it will win when it completes all of its objectives. It is not necessary to use
objectives for the AI. As long as a map is constructed in a logical manner, using capturable
zones, the AI will understand how to play it. Also see the TEAM commands
AddMinimapMarker, FlashPositionInMinimap and RemoveMinimapMarker, which add and
remove markers on the mini map. See the TEAM command ApRewardOrPenalty for a way to
give AP to teams. The following parameters are shared by all OBJ_AddObjective commands:

Common attributes
Player myPlayer

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 71 of 89

This is the player who should receive the objective. There is no harm in giving AI
objectives to human players, as long as there are sensical short and long descriptions
available, but be careful what objectives you give to AI players, or players who could be
AI if the map is played in skirmish mode.
LOCTEXT myShortDescription
This is the short description, the “name” of the objective. Keep it short and simple to
understand. The AI pays no attention to this.
LOCTEXT myLongDescription
This is the longer description available when the objective is clicked. The AI pays no
attention to this, but human players would like to know what to do on the map.
DECIMAL myImportance
Normally 1.0, this is the relative importance of the objective. For humans, this
determines the order in the objective list. For the AI, this is a multiplier for the relative
importance of this objective. 1.5 is a very large value. Using myImportance, the AI can
be told that a specific objective is more (or less) important than it seems.

For some objective types, the AI requires extra information. These are some of the AI-specific
parameters in Zone, SearchAndDestroy and DefendArea objectives:

DECIMAL myAIImportance
This is an absolute Importance value. Where myImportance only multiplies on a value
calculated by the AI, this value can be used to tell the AI “exactly” how important the
SearchAndDestroy (“SAD”) objective should be. 15 000 is a good starting value, but
should be tweaked if the AI does not seem to value the SAD-objective enough while
playing.
DECIMAL myCautionFactor
This is an objective-specific multiplier of the AI-specific general value
EngageSuccessProbability, described below in the description for the command
PLAYER_AiChangeEngageSuccessProbability. Basically, a low Caution factor means
the AI will try to complete the objective even with very small or weak forces. A high
Caution factor can mean that the AI will never “dare” to try completing the objective.
NUMBER myDifficulty
This is the unit strength required to complete the objective. This value is based on a
calculated “worth” of each type of agent. A lower value means a smaller, weaker force
is sent to the objective, while a greater value means that a more powerful force will be
sent. For comparison, a single Liberator Terradyne has a calculated value of 74.

OBJ_AddObjective_HumanObjective
This objective is only used for Human players. It displays objective text for the player, but
does not relate this to any area or agent on the map. This command has no parameters but
the four common ones mentioned above. The AI will ignore objectives of this type.

OBJ_AddObjective_DefendArea
This objective tells an AI to guard an area. The AI only uses the centre of the specified area,
so the size of this area does not matter, but the centre point must be accessible. It cannot be
blocked by a structure or a slope in the terrain.
Specifying an area of this type among neutral turrets will motivate the AI into using the turrets,
if there is no other objective nearby. This is useful for making the AI defend a base with no
zones, or to guard choke points, entrances and exits to isolated areas. This objective has a
myCaution value.

OBJ_AddObjective_DefendUnit
Do not use. This is a very special purpose objective only used on one mission in the GC2
campaign. It makes the AI defend an immobile agent. The defended agent must be added in
scripts prior to this objective. This command may cause crashes on other maps. Do not use it.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 72 of 89

OBJ_AddObjective_SearchAndDestroy
Special objective which makes the AI patrol a list of areas. When the squadron assigned to
this objective finds an enemy they will attack at all costs. It is best for the areas in the patrol
route to be connected. This Objective command requires a specific Difficulty and
AIImportance.

AreaRefList myAreas
This parameter lists all the areas that the “SAD” objective covers.

OBJ_AddObjective_Zone
This is a standard AI objective that tells the AI to capture and defend the specified VL or LZ.
The objective command is normally unnecessary, because the AI will always prioritize
capturable VLs and LZs by default. One reason to create a Zone objective for the AI is the
ability to set Caution and Importance values. This command has no effect on non-capturable
zones, as the AI reasons that it does not need to capture of defend something which cannot
be captured from or lost to an enemy. This objective uses an individual Caution factor.

TEAM_AddZone* myZone
This parameter is a reference to the Zone connected to this objective. The
TEAM_AddZone command must be created before the Objective. The zone must have
been added in scripts prior to this objective.

OBJ_AddObjective_Annihilate
Not used. This command was intended to give the AI an objective to dominate the entire
map, killing all opposition in the most aggressive mode possible. Hopefully it no longer works.

OBJ_ChangeObjectiveImportance
This command changes the importance value of an existing AI objective. Changing this during
a mission can be a good way to divert the AI’s attention and make it seem to respond to a
situation which the AI might otherwise ignore. The AI is a clever tactician, but it has no flair for
the dramatic.

DECIMAL myNewImportance
This decimal value is the new importance multiplier for the listed objectives.
ObjectiveRefList myObjectives
This is a list of references to the objectives which should have their importance
changed. The objectives must have been created and not removed before this
command is used.

OBJ_ObjectiveCompleted
This marks an existing objective as completed. The command is recommended for use only
on human players’ objectives. The objective will be marked as complete in the objective
screen, but will remain visible in the list. Please note that even a Failed objective can be
changed to Completed, so be careful with this command.

ObjectiveRefList myObjectives
This is a list of references to the objectives to be completed. The objectives must have
been created but not removed.

OBJ_ObjectiveFailed
This command marks one existing objective as failed. The command is recommended for use
only on human players. The objective will be marked as failed in the player’s objective screen,
but will remain visible in the list.

ObjectiveRefList myObjectives
This is a list of references to the objectives which have failed. The objectives must have
been created, but not removed. Please note that even a Completed objective can be
Failed, so be careful with this command.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 73 of 89

OBJ_RemoveObjective
This removes an objective for a Human or AI player. This is the only correct way to remove an
objective for an AI player. The objective will no longer be on the human player’s list of
objectives, and the AI will no longer attempt to complete it.

ObjectiveRefList myObjectives
This is a list of references to the objectives to be removed. The objectives must have
been created before they can be removed. It does not matter if the objective is failed,
completed or still active, though it is less confusing for human players if the objective
becomes either failed or completed before removing it.

Thing commands
A thing is based on a prop instance but has the ability to change state. A thing has no
collision so Agents can move through Things. All commands except THING_AddThing itself
use references to a THING_AddThing command:

THING_AddThing* myThing
This is the affected thing, which should move or change animation state or turn to look
at another object.

To create a Thing, select one you want it from the Instances list. Click in the world to place it.
Then make it usable and visible through scripting with the command THING_AddThing.
Remove it with THING_RemoveThing. Note that the THING_AddThing command uses a
reference to the thing instance, while THING_RemoveThing uses a reference to the
THING_AddThing command used.

THING_AddThing
This command adds a thing that has been placed in the 3D view. All script references to the
thing are then made to this command.

XThingInstance* myThingInstance
This is a reference to the thing instance. Place it into the world before connecting an
AddThing script command to it, and then rename the command appropriately.

THING_LookAtAgent
This command was never used and might not work. It was probably intended to rotate the
thing so that it faces towards a specified agent.

PLAYER_AddAgent* myAgentToLookAt
This is a reference to the agent the thing should rotate towards.
ActionAffector myAffector
This value determines if the specified or the context agent should be used.

THING_LookAtCamera
This command was never used in Ground Control II and might not work. It was probably
intended to rotate a thing so that it faces towards the camera of the specified team. What the
effect would be in an on-line game is difficult to say, as each team member has a camera of
their own.

Team myCameraToLookAtTeam
The team whose camera the Thing should turn to look towards.

THING_LookAtThing
Not used, possibly not implemented. The command was intended to rotate a Thing so that it
faces toward another Thing.

THING_AddThing* myThingToLookAt
This is a reference to the thing myThing should turn towards.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 74 of 89

THING_MoveTo
Not used. This command moves a THING_AddThing instance instantly to the centre of an
area. Because of the instant transportation, this is not a good way to make a Thing move as
part of a cinematic cutscene.

XSphereInstance* myPosition
This reference is the area the Thing should be transported to. The Thing will end up in
the absolute centre of the area.

THING_RemoveThing
Removes a thing added previously by the THING_AddThing command. The thing will no
longer be visible in the 3D world. Note that it will still be visible in XEd, because XEd does not
parse script commands, and displays all instances whether they are in use or not. This
command does not use any values other than myThing.

THING_SetAnimationState
This command sets the animation state of an added thing. The default animation state is
STND, for stand, an idle animation. Frequently used four-letter states are: STND, WALK,
FIRE, normally for “idle”, “active” and “death”.

TEXT my4LetterAnimationState
This is the animation state that the Thing should change into. It is encoded into four
letter combinations. STND is always the default, the state every newly spawned thing is
created in.

Thing name Animations

Tutorial Beacon WALK activates light & smoke.

Vir ClanShip WALK activates damage effects.

Vir ClanShip TakeOff WALK launches the ship.

WaterExplosion, Explosion WALK triggers the explosion effect.

BG Block House 05 Explode, BG Block
House 07 Explodable, explohouse1,
OrbitalGun, Shield Generator BG,
Power Generator, FL commandcenter

In STND the thing is undamaged. In WALK, the
thing is destroyed. If the thing is changed back to
STND after WALK, it will snap back into an
undamaged look.

RD Main WALK activates the dish. STN2 deactivates it.

Des Xenofact 02 WALK makes the Xenofact glow. FIRE explodes it.

Des Vlaana mountainbase Entrance 01 STND closes doors. WALK opens doors. FIRE
explodes the structure.

TRADER_SHIP STND lands the ship, during 17s. WALK launches it.

Imp ComShuttles WALK launches the craft.

Imp ComShuttles LAND TAKEOFF FIRE lands the craft and WALK launches it.

LaunchPad Arm BG VISUALMODEL WALK activates the launch pad arm.

Escape Pod BG WALK activates a shuttle, FIRE launches the shuttle
and BRNY explodes it.

THING_SetPlayerColor
This command was never used in Ground Control II. It can be used to change the colour of a
spawned thing to that of a certain player, much like the landing zone and victory location
markers change colours based on who owns it. Therefore, the VL_thing and LZ_thing objects
will probably work with this command, but most things might not.

Player myPlayer

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 75 of 89

This is the player whose colour should be used on the thing.

Triggers
Triggers check for a specific situation and will activate a target script when the situation
arises. When they have done so, they have been spent and are automatically destroyed. To
activate the same script when the same situation arises again, it will be necessary to create a
new trigger, or to somehow restart the one which was spent.
If a trigger monitors specific agents it is necessary for the agent to exist when the trigger is
created. Similarly, triggers which monitor players require the player to be connected to the
game when the trigger is created. Because of this, it is important to start Triggers after players
have connected and agents have been created. Also note that all triggers cost processing
power. It is not much, but do try to keep the number of active triggers to a minimum and kill
any triggers you no longer need.
If an Agent-trigger contains several agents in a list and some of these agents die or are
removed, the trigger can still be activated by the remaining agents. This can give rise to
peculiar situations. For example: A map has three agents: AGENT_1, AGENT_2 and
AGENT_3. The designer creates a TRIGGER_AgentsEnterArea on an area named
GOLD_AREA, listing all three agents, with myFireWhenFlag set to AllAgents and
myTriggeredScript will display the message “All agents have found the gold!”.
During the course of playing this map, AGENT_1 and 2 enter the GOLD_AREA, but
AGENT_3 is held up on the way there. While AGENT_3 is delayed, AGENT_1 and 2 have
time to leave the GOLD_AREA. When AGENT_3 dies several minutes later, without ever
reaching GOLD_AREA, the message “All agents have found the gold!” will appear, because
now all (living) agents in the list have entered the area even though none of them is within the
area at this time. To the player who just destroyed AGENT_3, this will seem very odd. Be
aware of this possibility.

Trigger context
Most triggers update the current CONTEXT, but what is it updated to? The principle is that the
agent, or player, or team who caused the Trigger to become active will become the new
CONTEXT. Some triggers are confusing, however. For example, what context does
AgentsWereKilled create? The killed agent is obviously dead and not a very useful context.
Therefore it is logical to assume that it is the killer who becomes stored as the new context
agent. But if that is the case, then what about AgentsUnderAttack? Is it the attacker or the
attacked who becomes stored as context in that case? It is all very confusing.
See the chapter on the CONTEXT system for more detail.

Common attribute
All triggers share this attribute, and TRIGGER_ConditionBranch can have several:

Script* myTriggeredScript
This is the script which will be activated when the trigger fires.

TRIGGER_AllPlayersReady
This trigger waits for all players to be connected to a game before it runs a script. This
command is very useful for delaying the start of a multiplayer or cooperative mission until all
players have connected to the game. This trigger requires no attributes other than
myTriggeredScript. See also the chapter on Starting.

TRIGGER_Timer
The simplest of all triggers. Create the trigger, set the timer and when the time runs out, the
target script will be started. Easy to use, and extremely difficult to do without.

DECIMAL myTimeInSeconds
This is the time, in seconds, after which the trigger will fire and activate its
myTriggeredScript. The value is decimal, and will therefore accept fractions of seconds.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 76 of 89

Due to imperfect accuracy in the conversion between numbers and text strings, please
do not be alarmed if 10.0000 suddenly comes out as 10.0001 or 9.9998.

TRIGGER_TriggerIsTriggered
This trigger activates a script when a certain number of listed triggers have fired. This trigger
is special in that it does not require its monitored triggers to exist when it is started.
TRIGGER_TriggerIsTriggered will wait for the a trigger of the specified name to fire. Only
SCRIPT_KillTriggers can prevent this, either by killing the monitored triggers or by killing the
TRIGGER_TriggerIsTriggered itself.

TriggerRefList myTriggers
This is a list of references to triggers to be monitored. The triggers do NOT need to
have been created, or even be created. The listed triggers will use full names, such as
myInstances.myScripts.START.TRIGGER_Timer__0.
NUMBER myNeededNumberOfTriggeredTriggers
A mission designer can choose to fire the trigger only when this amount of monitored
triggers have fired. If this number of triggers never fire, neither does the
TRIGGER_TriggerIsTriggered.

TRIGGER_TriggerIsTriggered TRIGGER_TriggerIsTriggered__TWO_TIMERS

{

 myTriggeredScript myInstances.myScripts.TWO_TIMERS_SCRIPT

 myNeededNumberOfTriggeredTriggers 2

 myTriggers

 {

 TRIGGER_Timer* Timer_1 myInstances.myScripts.TRIGGER.Timer_1

 TRIGGER_Timer* Timer_2 myInstances.myScripts.TRIGGER.Timer_2

 TRIGGER_Timer* Timer_3 myInstances.myScripts.TRIGGER.Timer_3

 }

}
The above simplistic example will activate the script TWO_TIMERS_SCRIPT once two of the
listed timers in the TRIGGER script have run out. For example, if the timers are 1, 2 and 3
minutes long, the script will be started once 2 minutes have passed.

TRIGGER_CampaignFlagNotSet
Triggers a script if the specified campaign flag has not been set, i.e. does not yet exist. Even
if the campaign flag is set to zero or <null>, it is considered to be "set".

TEXT myFlag
Enter the name of the campaign flag in this value.

TRIGGER_CampaignFlagSet
Triggers a script if the specified campaign flag has been set, i.e. that it exists. Even if the
campaign flag is set to zero, it is considered to be “set”.

TEXT myFlag
Enter the name of the campaign flag in this value.

TRIGGER_ConditionBranch
Sets up one or more Options. Only one of these options will execute its script when all of its
Conditions have been met.

Options myOptions

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 77 of 89

This is the list of options. Each option will have a target script, and each has a set of
conditions which need to be fulfilled to start that script. Compare this to a multiple-
choice questionnaire. Several answers could be right, but only the first correct one will
actually be chosen. Each Option consists of the following parameters:
Script* myTriggeredScript
This is the script which will start if this Option is the one to become true first.
Conditions myConditions
These are the conditions for this Option to start its Script. Each option can have several
Conditions which all have to be true for the option itself to be considered true as well.

TRIGGER_ConditionBranch TRIGGER_ConditionBranch_LZ3_or_LZ4

{

 myOptions

 {

 Option op1

 {

 myTriggeredScript myInstances.myScripts.LZ3

 myConditions

 {

 CONDITION_IntCampaignFlagEquals con1

 {

 myFlag FLAG_LZ3

 myValue 1

 }

 }

 }

 Option op2

 {

 myTriggeredScript myInstances.myScripts.LZ4

 myConditions

 {

 CONDITION_IntCampaignFlagEquals con1

 {

 myFlag FLAG_LZ4

 myValue 1

 }

 }

 }

 }

}
In this example, the ConditionBranch has two options, op1 and op2, with only one condition
each. Option Op1 checks to see if the CampaignFlag FLAG_LZ3 equals 1, and starts the
script LZ3 if it does, while the option Op2 instead checks the flag FLAG_LZ4 and starts the

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 78 of 89

script LZ4 if that equals 1. If either option had more than one condition, all conditions under
that option must become true before the option starts its script. Also see definition of
SCRIPT_ConditionBranch and the separate chapter on Conditions.

TRIGGER_GameOver
This trigger will fire when a team has won the game. A special campaign flag called
MISSION_OPTION_WIN_TEAM will be set either to 0, for a tied game, or 1 to 8 for the team
which won the game. This campaign flag can then be checked with a
TRIGGER_ConditionBranch to produce different scripted endings depending on which team
won the match.

TRIGGER_MessageBoxClosed
This trigger activates a script when the specified message box has been closed. The
messagebox command must have been started when this trigger is created, or the trigger will
never fire.

MessageBoxRefList myMessageBox
This list should contain only the message box to be monitored. The value is a list so
that it can contain all three types of message box: TEAM_ShowAutomaticMessagebox,
TEAM_ShowTimedMessageBox or TEAM_ShowButtonMessagebox, but the list should
only hold one item at a time.

Agent triggers
The following triggers all deal with Agents. For practically all of these triggers, the one agent
which causes the trigger to fire is saved as the new CONTEXT.AGENT, even when several
agents are involved. Aside from myTriggeredScript, these triggers all have a few more
attributes in common.

Common attributes
AgentRefList myAgents
This is a list of references to agents monitored by the trigger. The agents must have
been created before the trigger. This list works just like the list of the same name on
AGENT commands. If myAffector is SPECIFIC, all listed agents will be affected by the
trigger, in conjunction with the myFireWhenFlag value, which determines if all agents
are affected, or only the first one to perform the required action.
AgentsFlag myFireWhenFlag: FirstAgent, AllAgents
This value can be either FirstAgent or AllAgents, which will determine if the trigger fires
as soon as one of the listed agents enter the area, or if it should wait for all agents. If
there is only one agent in the list this value has no function. If any of the agents in the
list are dead or do not exist, AllAgents means only all agents which are still alive, which
can have some strange side-effects.
TriggerAffector myAffector: SPECIFIC, CONTEXT or ANY
This is different from ActionAffectors used by non-triggers, which only be SPECIFIC or
CONTEXT. When set to SPECIFIC, the myAgents list is used. When set to CONTEXT,
the trigger will wait for the agent currently saved into CONTEXT.AGENT instead of any
agents listed in myAgents, which can be left empty. When set to ANY, the trigger can
be activated by any unit what so ever, no listing or context required.

TRIGGER_AgentsEnterArea
This trigger activates a script when a listed number of agents have entered the defied area.
The trigger can be set to wait for all the listed agents or to fire when the first listed agent
enters. Please mote that the larger an area is, the more processing power it will require for a
trigger to monitor it.

XSphereInstance* myArea
This is the area monitored by the trigger. As soon as the required agents enter this
area, the trigger fires and activates myTriggeredScript.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 79 of 89

TRIGGER_AgentsLeaveArea
Activates a script when the specified agents have left the area. The agents may have to be
inside the designated area when the trigger is set up in order for it to trigger when they leave.

XSphereInstance* myArea
When the agents exit this area, the trigger will activate its script.

TRIGGER_AgentsEnterBuilding
This trigger activates a script when a list of agents has entered the specified building or other
Prop. Obviously the listed myAgents need to be capable of entering props, and the prop
needs to be capable of harbouring agents, or the trigger is useless. This is something you as
a designer need to be aware of. See also AGENT_EnterBuilding.

XPropInstance* myBuilding
This is the building or other Prop which the agents must enter to activate the trigger.

TRIGGER_AgentsEnterContainer
Triggers a script when a list of agents has entered another agent. Typically, infantry can enter
turrets and APC vehicles, while vehicles can enter the NSA Transport Copter. Also refer to
AGENT_EnterContainer.

PLAYER_AddAgent* myContainer
This is the agent with a container parasite which myAgents must enter for the trigger to
fire. The agent must be created before the trigger.

TRIGGER_AgentsExitBuilding
This trigger fires when the specified agents exit the myBuilding prop. The trigger must be
created after the agents, but it does not matter if the agents have entered the building
already. This trigger will calmly wait until they Exit before activating the target script.

XPropInstance* myBuilding
This is the building or other Prop which the agents must exit to activate the trigger.

TRIGGER_AgentsExitContainer
This trigger fires when the specified agents exit the myContainer agent. The trigger must be
created after the agents, but it does not matter if the agents have entered the Container
already. This trigger will calmly wait until the agents exit this container before activating the
target script.

PLAYER_AddAgent* myContainer
This is the agent with a container parasite which myAgents must exit for the trigger to
fire. This agent must be created before the trigger.

TRIGGER_AgentsHaveKilled
Triggers a script when the listed agents have killed any agent. When myAffector is set to
ANY, obviously this trigger will fire as soon as any agent has been killed by any other agent.
The agent which causes the kill is stored into Context. This trigger requires no additional
attributes.

TRIGGER_AgentsUnderAttack
Triggers a script when the listed agents have been attacked and taken damage. Attacks that
do no damage does not activate this trigger; nor should friendly fire, but the detection code
might not be able to distinguish between friendly and hostile splash damage. The agents
responsible for the attack will become the new CONTEXT.AGENT. This trigger takes no
additional attributes.

TRIGGER_AgentsWereKilled
Triggers a target script when the specified agents have died. This trigger was used very often
throughout the Ground Control II campaign. The agent that died will be the new

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 80 of 89

CONTEXT.AGENT which will not be very useful, but CONTEXT.PLAYER and
CONTEXT.TEAM can be. This trigger requires no additional attributes.

Agent Type triggers
These triggers all deal with agent types. The names of all agent types can be found in the
Instances window in XEd, listed under the Agents branch. F1_Assault_APC is one agent
type, F2_Covinus is another.
The greatest benefit over Agent triggers is that there is no requirement for the expected agent
to exist at the time the Agent Type trigger is created, as there is no specific references to
agents, only agent types. Agent type triggers cannot use CONTEXT for detection, but will still
update context by saving data on the specific agent which activated the trigger. Because of
this, they behave similarly to Agent triggers, but lack myAffector and myFireWhenFlag
attributes, and replace myAgents with myAgentType.

Common attribute
TEXT myAgentType
The myAgentType is written in plain text and cannot use Context. The name of the
agent type must be exactly the same as in the agent instance list in XEd. There is no
selection box in XEd for this value, so it is up to the designer to type the exact agent
type name, for example F1_Engineer_Vehicle, F2_Missile_Walker or
F3_UnmelderEgg.

TRIGGER_AgentTypeEnterArea
Activates a script when an agent type has entered an area. Tip: You can detect melding by
checking an area for F3_MelderEgg, F3_MelderEggAir and F3_MelderEggInfantry.

XSphereInstance* myArea
This area will be checked several times per second for an agent of myAgentType.

TRIGGER_AgentTypeEnterBuilding
Starts a script when one agent of the specified agent type has entered the building.
Remember that there is no point in waiting for a tank to enter a hotel, since it will never
happen. Not even an aircraft flying over the building will activate the trigger, because it
expects agents to actually take up a position slot inside the building.

XPropInstance* myBuilding
Select the building you wish to monitor for the specific agent type. Unlike the
myBuilding attribute for the AgentEnterBuilding trigger, XEd will display all props in this
list; not just actually enterable buildings.

TRIGGER_AgentTypeExitBuilding
This trigger fires when agents of the correct type exit myBuilding. It does not matter if agents
have already entered the building. This trigger will wait until agents exit before activating the
target script.

XPropInstance* myBuilding
This is the building or other Prop which agents must exit to activate the trigger. Please
note that in contrast to AgentExitBuilding, XEd will list all buildings here, instead of just
enterable ones. Choose carefully.

TRIGGER_AgentTypeEnterContainer
This trigger activates a script when an agent type has entered the specific container, normally
an APC or a gun emplacement. Please note that there is no check to see if myContainer is
really a container – all PLAYER_AddAgent commands are listed.

PLAYER_AddAgent* myContainer
This is the container agent to be monitored for entering agents of the correct type. This
agent must exist when the trigger is created.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 81 of 89

TRIGGER_AgentTypeExitContainer
This trigger fires when agents of the specified type exit the specified gun emplacement, APC
or other agent which can carry agents. There is no point waiting for tanks to enter an APC,
unless you have given them a parasite enabling them to, so make sure you pick a sensible
agent type.

PLAYER_AddAgent* myContainer
This is the agent with a container parasite which myAgents must exit for the trigger to
fire. This agent must be created before the trigger.

TRIGGER_AgentTypeHaveKilled
Triggers a script when an agent type has killed another agent. The name of the agent type
must be exactly the same as in the agent instance list in XEd. The agent which successfully
kills another agent is saved as the current CONTEXT.AGENT. This trigger requires no
additional attributes.

TRIGGER_AgentTypeLeaveArea
This trigger activates myTriggeredScript when an agent of the correct type has left the
specified area. This can be used to detect if Virons have finished melding, because their
F3_MelderEgg will “leave” the area into thin air.

XSphereInstance* myArea
This is the area which will be monitored for an agent of the matching type. The smaller
the area, the more efficient the detection code will be.

TRIGGER_AgentTypeUnderAttack
Triggers a script when an agent of a specific type has been attacked and damaged. The
agent which first takes damage will become the new CONTEXT.AGENT. This simple trigger
requires no additional attributes.

TRIGGER_AgentTypeWasKilled
This trigger will start a script when any agent of the specific type has been killed. This trigger
requires no other attributes. This can be a quick way of knowing when an NSA drop ship
(F1_Dropship) has been destroyed, for example. This simple trigger needs only myAgentType
and myTriggeredScript.

PLAYER triggers

Common attributes
Obviously, all PLAYER triggers will have a value in common for which player it acts on, as
well as a myTriggeredScript value.

Player myPlayer
This value can be anything from PLAYER_PLAYER1 to PLAYER_PLAYER8 as well as
CONTEXT.PLAYER and PLAYER_ANY. Setting this value to PLAYER_NOPLAYER
will not work, as that means the trigger will “wait for no player”. It does not work that
way.

TRIGGER_PlayerAction
Special trigger used in the tutorials and for skipping cutscenes. It triggers on many different
kinds of input from the player.

PlayerAction myAction
This is the only command which uses a “PlayerAction” type attribute. This enumerated
type can have any one of the following values:

AGENT_SELECTED Player selects one agent.

AGENT_SELECTED_MULTIPLE Player to selects more than one agent.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 82 of 89

REPAIR_BUTTON_PRESSED Player presses the Repair button.

SECONDARY_MODE Player activates a secondary mode.

DROPSHIP_CONFIG_PRESSED Player presses the drop ship configuration button.

DROPSHIP_DEPLOY Player presses the Deploy button.

DROPSHIP_UPGRADE Player views the drop ship upgrade screen.

DROPSHIP_UPGRADE_STARTED Player has activated a drop ship upgrade.

DROPSHIP_SELECT Player has selected his drop ship.

DROPSHIP_SELECT_LZ Player has selected an LZ for the drop ship.

MEGAMAP_PRESSED Player has pressed the objectives button.

MEGAMAP_CLOSED Player has closed the objectives screen.

SUPPORT_WEAPON_USED Player has used a support weapon.

SKIP_CUTSCENE Player attempts to skip a cutscene.

NO_ACTION Player has done nothing. Never used.

Most of these commands were only ever used in the tutorial missions, but the
SKIP_CUTSCENE action is used throughout the Ground Control II campaign:

Script example

TRIGGER_PlayerAction CINE3_CutSceneSkipper

{

 myPlayer PLAYER_PLAYER1

 myAction SKIP_CUTSCENE

 myTriggeredScript myInstances.myScripts.NULL

}
As seen in this example, the trigger CINE3_CutSceneSkipper waits for PLAYER_PLAYER1
to press any combination of keys which are meant to skip cutscenes. It is script code
responding to this simple trigger which ends all cutscenes, removing actor agents, silencing
message boxes, et cetera. There is no programming involved, cinematic cut scenes must be
created and removed piece by piece through scripting.
The reason this trigger points to the script NULL is that a TRIGGER_TriggerIsTriggered
monitors CINE3_CutSceneSkipper as well as triggers that indicate that the cinematic cut
scene has run its course. Then the IsTriggered activates CINE3_EXIT, which contains all the
necessary clean-up scripts. See the chapter on Cutscenes for more information.

TRIGGER_PlayerConnected
Triggers a script as soon as a player has connected. This uncomplicated trigger only requires
a player. In all retail multiplayer missions, one TRIGGER_PlayerConnected will wait for
PLAYER_ANY to connect, and then his camera was moved to his LZ and he received his
objectives.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 83 of 89

Script example

Script Player_connect_ANY

{

 TRIGGER_PlayerConnected TRIGGER_PlayerConnected_ANY_1

 {

 myTriggeredScript myInstances.myScripts.Player_connected_ANY

 myPlayer PLAYER_ANY

 }

}

Script Player_connected_ANY

{

 SCRIPT_ActivateScript Reactivate_Player_connect_ANY

 {

 myScript myInstances.myScripts.Player_connect_ANY

 }

 PLAYER_MoveCameraToLz PLAYER_MoveCameraToLz__17

 {

 myPlayer CONTEXT.PLAYER

 myMoveTimeInSeconds 0.000000

 }

 OBJ_AddObjective_HumanObjective OBJ_DeathMatch

 {

 myPlayer CONTEXT.PLAYER

 myShortDescription "Deathmatch"

 myLongDescription "Kill all enemy units"

 myImportance 0.0

 }

}
In this example, TRIGGER_PlayerConnected_ANY_1 waits for PLAYER_ANY, and then that
player is saved as the CONTEXT.PLAYER. The script Player_connected_ANY will first restart
the Player_connect_ANY and the spent trigger. Then the player’s camera will be moved to his
LZ, and the player receives a simple objective. The next player to activate the now-
resurrected TRIGGER_PlayerConnected_ANY_1 will receive the exact same treatment, as
well as cause the trigger to be resurrected once more and wait for the third player who
connects.

TRIGGER_PlayerEnterArea
This trigger is activated when agents belonging to the specified player enters myArea.
Remember to make the area only as large as strictly necessary. It is often better for
performance and accuracy to use several smaller areas and tie them together with a
TRIGGER_TriggerIsTriggered instead of using one very large area.

XSphereInstance* myArea

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 84 of 89

Point this value to the area you wish to monitor. Prepare by creating this area before
setting up the trigger.

TRIGGER_PlayerLeaveArea
Activates a script when all agents belonging to the player have left the specified area. The
agents may have to be inside the area when the trigger is set up in order for it to become
active once they leave.

XSphereInstance* myArea
When the player has left this area, the trigger will fire.

TRIGGER_AnyOtherPlayerEnterArea
This trigger is the direct opposite of TRIGGER_PlayerEnterArea. Instead of waiting for the
specified player to enter myArea, the trigger will be activated when any player other than
myPlayer enters the area. This can be useful to let one player know if another is intruding,
instead of setting up one PlayerEnterArea trigger for every player in the game.

XSphereInstance* myArea
This is the area to be monitored by the trigger.

TRIGGER_PlayerEnterBuilding
Starts a script when one agent belonging to the specified player has entered the building. The
trigger expects agents to take up a position slot inside the building.

XPropInstance* myBuilding
Select the building you wish to monitor. Only enterable buildings will be listed.

TRIGGER_PlayerExitBuilding
Starts a script when one agent belonging to myPlayer exists the specified building.

XPropInstance* myBuilding
Select the building you wish to monitor. Only enterable buildings will be listed.

TRIGGER_PlayerEnterContainer
This trigger activates a script when an agent belonging to myPlayer has entered the specific
container agent. Using this, you can perform script actions on a player who captured a radar
tower, gun emplacement or a capturable vehicle. Why not blow him up in a good old
fashioned mafia car bomb using the AGENT_Die or AGENT_Hurt commands and
CONTEXT.AGENT?

PLAYER_AddAgent* myContainer
This is the container agent to be monitored for agents belonging to the specific player.
There is no check to see if myContainer really is a container – all PLAYER_AddAgent
commands are listed. This agent must exist when the trigger is created.

TRIGGER_PlayerExitContainer
This trigger fires when agents belonging to the player exit from the specified container agent.

PLAYER_AddAgent* myContainer
This is the agent with a container parasite which the player must exit to activate the
trigger. This agent must be created before the trigger.

TRIGGER_PlayerHaveKilled
This trigger starts a script when the player has killed an agent. It is possible that this trigger
will fire even if the player kills one of his own agents. When myAffector is set to
PLAYER_ANY, this trigger will fire as soon as any player has killed anything. This trigger
requires no additional attributes.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 85 of 89

TRIGGER_PlayerUnderAttack
Triggers a script when any unit belonging to the specific player has been attacked and
damaged. Again, it is possible that this trigger will be activated even if the player damages his
own agents. Those tricksy humanses will do anything to break a good script. This trigger
requires no additional attributes.

TRIGGER_ZoneTakenByPlayer
This trigger starts its target script when a player captures myZone, a TEAM_AddZone. This
means that the player must have held the zone until it has passed from Neutral ownership to
Team ownership, but that this must have been done by this exact player. It may seem
confusing that this trigger can detect which exact player who took over a zone, when zones
can only be owned by teams, but this trigger certifiably works, as it is an essential part of
many Ground Control II missions. The trigger makes no distinction between different types of
zone, as long as they were created by a TEAM_Addzone command.

TEAM_AddZone* myZone
This is the zone which should be monitored. The zone must have been created before
the trigger is set up. Please note that this trigger can only monitor a single zone, in
contrast to ZonesTakenByTeam which uses a ZoneList instead of a TEAM_AddZone
reference.

TEAM triggers
These triggers have a few benefits over player triggers. For one thing, it is often more relevant
to keep track of teams than of players. Zones are controlled by teams, not players, and
because players can freely choose their teams it is never certain what team a specific player
will be on. Also in the case of Cooperative missions it can be very useful to trigger by
TEAM_1 instead of using three or more separate player-related triggers expecting either one
of the players on the cooperating team.

Common attributes
All TEAM triggers deal with specific teams, and so they all have a value distinguishing which
team is expected.

Team myTeam
This is the team which the trigger expects. It can be set to TEAM_1 to TEAM_8, but
also to TEAM_ANY for any team at all as well as CONTEXT.TEAM. TEAM_NOTEAM is
also available as an option, and covers neutral gun emplacements and other agents
without a player in control.

TRIGGER_TeamEnterArea
This trigger is very similar to TRIGGER_PlayerEnterArea. The only difference is that this
trigger monitors an area for agents belonging to any player in the team.

XSphereInstance* myArea
Point this value to the area you wish to monitor. Prepare by creating the area before
setting up this trigger.

TRIGGER_AnyOtherTeamEnterArea
Activates a script when all agents belonging to all players on the team have left the area. The
team may have to have agents inside the area when the trigger is set up in order for it to
become active once they leave, but it’s possible that the trigger works even if the team hasn’t
passed through yet.

XSphereInstance* myArea
When all agents belonging to this team have left this area, the trigger will fire.

TRIGGER_NumberOfZonesTakenByTeam
This trigger activates the targets script when the specified team has ownership of at least the
specified number of TEAM_AddZones. This trigger is very practical in that it contains no

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 86 of 89

references to the specific zones, and thus has no requirement for being created after the
zones have been created.

NUMBER myNumberOfZonesNeeded
This value is a simple integer number. Remember that the trigger will fire when the
team has at least this number of zones. For example, a value of four will activate the
trigger instantly if the team already has five zones.

TRIGGER_NumberOfZonesTakenByTeam TRIGGER_Player_Takes_All_Zones

{

 myTriggeredScript myInstances.myScripts.EV_13

 myTeam TEAM_1

 myNumberOfZonesNeeded 3

}
The above example is from C2M13, the first mission in the second campaign and the
thirteenth mission total. It is a Viron mission with three Victory Locations. Because the
NumberOfZonesTakenByTeam trigger does not require zones to be created before the
trigger, it is perfectly suited to this level where zones appear over the course of the mission.
As soon as TEAM_1, meaning the human team of up to 3 cooperative players, are holding
three zones simultaneously, the EV_13 (event 13) script is started, and the success sequence
starts playing from there.

TRIGGER_ZonesTakenByTeam
The ZonesTakenByTeam trigger is unique in that a single trigger of this type can monitor
several zones at the same time. It waits for the specified team to take over one or all of the
TEAM_AddZones listed in its ZoneList myZones. Much like agent triggers, it also features an
attribute – myAllZonesFlag – which controls whether all are required zones to have been
taken or if it is enough if one of the listed zones falls under the control of the specified team.
The greatest benefit from this construction is that the singular trigger will not be activated if
the team takes one of the zones, loses it, then takes another zone. This trigger keeps track of
all that, without the need to create additional trigger to check if any another team takes the
zones back.
If the listed zones already belong to myTeam, the trigger will fire instantly.

ZoneList myZones
This is a list of references to TEAM_AddZone commands. If this list contains only one
zone, myAllZonesFlag has no effect as that one zone is both the first zone and all listed
zones. Evidence from NSA mission 10 suggests that in contrast to standard, the zones
listed here do NOT have to be created before the trigger.
Flag myAllZonesFlag
TRUE or FALSE. When this flag is TRUE, the trigger will wait until all myZones are
under control by myTeam simultaneously before starting myTriggeredScript. To script
this kind of control system in any other way would be very, very complicated if at all
possible. When this flag is false, it is enough for either one of the zones listed in
myZones to be controlled by myTeam in order for the trigger to activate the target
script.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 87 of 89

Script example

Script TRIGGERS

{

 TRIGGER_ZonesTakenByTeam Player_Has_All_Zones

 {

 myTriggeredScript myInstances.myScripts.NULL

 myTeam TEAM_1

 myAllZonesFlag TRUE

 myZones

 {

 TEAM_AddZone* LZ1 myInstances.myScripts.ZONES.LZ1

 TEAM_AddZone* LZ2 myInstances.myScripts.Second_Wave.LZ2

 TEAM_AddZone* LZ3 myInstances.myScripts.Second_Wave.LZ3

 TEAM_AddZone* LZ4 myInstances.myScripts.Second_Wave.LZ4

 }

 }

 TRIGGER_TriggerIsTriggered TRIGGER__time_is_up

 {

 myTriggeredScript myInstances.myScripts.EV_11_time_is_up

 myNeededNumberOfTriggeredTriggers 1

 myTriggers

 {

 TRIGGER_ZonesTakenByTeam* Player_Has_All_Zones
myInstances.myScripts.TRIGGERS.Player_Has_All_Zones

 TRIGGER_Timer* Timer_EV_11
myInstances.myScripts.EV_10.Timer_EV_11

 }

 }

}
This is more or less an exact example from C1M10, NSA mission 10. Within the TRIGGERS
script we find a TRIGGER_ZonesTakenByTeam trigger listing all the possible Landing Zones
on the map. The trigger waits for TEAM_1, the human-and-allies team to take over all four
zones. When they do, it will only start the script called NULL which has no commands in it,
but there is also the TRIGGER_TriggerIsTriggered to watch out for. It needs only one out of
its two monitored triggers to fire and then it will activate script EV_11, event eleven. One of
these monitored triggers is our ZonesTakenByTeam trigger mentioned above, while the other
is a 1200 second Timer that is not created until in script EV_10, event ten.
What does all this mean? Well, if it works, this means that a skilled player or team of
cooperative players could manage a quick win on C1M10 by taking over all four landing
zones and control them all at once. Did you know that?

Conditions
Conditions are not commands in the ordinary sense. They cannot be selected directly in the
Script window, but they are available as options for TRIGGER_ConditionBranch and

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 88 of 89

SCRIPT_EvaluationBranch, where they help decide if an Option is either True or False.
Several Conditions can be used in conjunction when several are listed under a single Option,
in which case all conditions need to be or become true in order for the Option to be true.
As you can see, a non-existent campaign flag will return the value null (0) which is the same
value as if the campaign flag existed, but contained the value zero (0). There is no condition
which can directly determine if a campaign flag is set (exists) or not, but the condition
IsTriggered can be used in conjunction with a CampaignFlagNotSet trigger to make this
distinction.
Note that when a Condition is added to a list of conditions, it will be named
myScriptclassEntry by default. Be aware that this is only a default name, and you can freely
change it to distinguish the different conditions you use.

CONDITION_IntCampaignFlagEquals
This condition checks if the integer campaign flag in myFlag has a value which equals
myValue.

TEXT myFlag
This is the name of the integer campaign flag that should be checked. If the flag does
not exist, or the name is incorrect, its value will be null (0).
NUMBER myValue
If the campaign flag number is equal to myValue, the condition will be true.

CONDITION_StrCampaignFlagEquals
This condition checks if the string campaign flag in myFlag has text content which equals the
text string in myValue.

TEXT myFlag
This is the name of the string campaign flag that should be checked. If the flag does not
exist, or the name is incorrect, the value will be null (0).
TEXT myValue
This is the text string compared to the contents of the string campaign flag.

CONDITION_IntCampaignFlagNotEquals
TEXT myFlag
This is the name of the integer (number) campaign flag that should be checked. If the
flag does not exist, or the name is incorrect, the value will be null (0).
NUMBER myValue
If the campaign flag number is NOT equal to myValue, the condition will be true.

CONDITION_StrCampaignFlagNotEquals
TEXT myFlag
This is the name of the string (text) campaign flag that should be checked. If the flag
does not exist, or the name is wrong, its value will be null (0).
TEXT myValue
If the campaign flag text string is NOT the same as myValue, the condition will be true.

CONDITION_IntCampaignFlagGreaterThan
TEXT myFlag
This is the name of the string (text) campaign flag that should be checked. If the flag
does not exist, or the name is wrong, its value will be null (0).
NUMBER myValue
If the campaign flag number is greater than myValue, the condition will be true.

Document no: Date: Issue:

XED-MAN-0001 2004-11-12 1

Page 89 of 89

CONDITION_IntCampaignFlagLessThan
TEXT myFlag
This is the name of the integer (number) campaign flag that should be checked. If the
flag does not exist, or the name is wrong, its value will be null (0).
NUMBER myValue
If the campaign flag number is less than myValue, the condition will be true.

CONDITION_Timer
When this condition is set up, the timer will start to count. Once the time has passed, the
condition will become true.

DECIMAL myTimeInSeconds
The time it will take before the conditions becomes true.

CONDITION_IsAreaEmpty
This condition checks to see if a specified area is empty of Agents.

XSphereInstance* myArea
This is a reference to the area that should be checked. Place the area in the world like
any other area, and then link to it here.

CONDITION_IsTriggered
This condition works just like TRIGGER_TriggerIsTriggered, checking the listed triggers.
Using this command, any trigger at all can be used as a Condition. If the trigger has already
been activated when the condition is set up, the condition will be considered true instantly.

TriggerRefList myTriggers
The condition becomes true when the listed triggers have been activated.

