
Ark’s Tutorial For Creating Bot Waypoints 
 

Last Updated: 7/08/03 
 
 
Introduction 
 
From the outset, it must be noted that this tutorial has been adapted and expanded from Rich 
Whitehouse’s tutorial “Jedi Knight2 Bot Routes”, which was written for Jedi Knight 2. While 
the basic principles of bot route (waypoint) creation between Jedi Knight 2 and Soldier Of 
Fortune are essentially the same, this tutorial will re-cover these aspects but with more detail. 
This tutorial should be a bit more helpful in regards to the process of making bot routes, 
although you should also read Rich Whitehouse’s tutorial, which is included in the documents 
folder, to get an idea of the more technical aspects. 
 
 
 
What Are Waypoints? 
 
If you want to play against bots on a level of SOF2, you need to have a waypoint file for that 
level in your ‘fmr/botroutes’ folder. The waypoint file will have the same name as the level you 
want to play, but will have the extension .WNT. For example, a waypoint file for the map 
mp_raven would have the file name mp_raven.wnt. Without a waypoint file telling the bots 
where to go and how to interact with certain parts of the environment, the bots will simply 
stand in the spot where they spawn. Not much fun is it? 
 
If you are trying to play a standard retail level that was included with Soldier Of Fortune 2, or 
has been added in a patch, then there should be a waypoint file made already. If you are 
attempting to play a custom map, then it is less likely to have a waypoint file. There are two 
ways to get these missing waypoints - by trying to download a waypoint file from a site such 
as SOF2Files.com (www.sof2files.com), or making one yourself. Since this mod is based on 
the bot code implemented in Man Down, the waypoints from Man Down are compatible with 
this mod, and vice versa. 
 
There is a lot of satisfaction to be gained from knowing how to make your own waypoints, and 
once you have waypoint file for a level that is working well, then you can always submit your 
file to a site such as SOF2files for others to use. 
 
 
 
Getting Started 
 
Before you can get started making your waypoints, you must first enable the waypoint-editing 
mode. To enable waypoint-editing mode you will need to change the bot_wp_edit cvar to 1, 
rather than the default 0, then restart the map. The problem is however that this bot_wp_edit 
cvar is cheat-protected, so you must get around this before you can proceed. 
 
The easiest way to enable bot_wp_edit is to use the batch (.BAT) file called “Waypointing”, 
located in the SOF2MPBARD folder. This file has been made to allow users to quickly get into 
waypointing, and simply calls the command line: 
 
start sof2mp +set fs_game bard14 +devmap mymapname +set bot_wp_edit 1 
 
This will start up the mod and load the map called “mymapname” in developer mode with 
bot_wp_enabled. Of course there is no maps named “mymapname”, so before making 
waypoints for your map you will have to edit this batch file and enter in the name of the map 
you want to waypoint. Simply right-click on the batch file and select “edit” – this will open up 
the file in notepad. It is a simple case of replacing the word “mymapname” with your map own 
map name, i.e. mp_raven. You will need to change this every time you make waypoints for a 



different map. Once you have made that change, simply save it and run the batch file by 
double-clicking on it. You should now be ready to start waypointing!!! 
 
NOTE: You must have the exact name of the .BSP file, minus the .BSP extension. You may 
need to open up the .PK3 file the map is stored in (using WinZip or a similar 
archiving/compression program) to find out the exact name. 

 
 
Waypoint Commands 
 
After running the batch file, the map you wish to make waypoints should have loaded, 
bypassing any of the SOF2 menus. You will now be start the map at a random spawn point, 
from here you can start entering waypoint commands. 
 
Below are the main waypoint commands you will need to know, these have been taken 
directly from Rich Whitehouse’s tutorial, “Jedi Knight2 Bot Routes”. 
 
bot_wp_add - Adds a waypoint at your current in-game location. By default it will add a 
waypoint after the last in numerical order. However, if you specify an argument with the 
command it will add the waypoint after a specified waypoint number. So, if you use 
"bot_wp_add 3", it will insert a waypoint between waypoint 3 and waypoint 4 as waypoint 4 
(waypoint 4 will then be bumped up to waypoint 5 an so on). 
 
bot_wp_rem - Removes a waypoint. By default this will remove the last waypoint place. If 
you specify an argument you can remove a specific waypoint by number. So bot_wp_rem 5 
would remove waypoint number 5. (and if there is a waypoint number 6, it then becomes 
number 5, and so on) 
 
bot_wp_addflagged - Similar to bot_wp_add, but this requires an argument for the special 
type of waypoint. Valid arguments are: 
 
j - The bot will jump while trying to get to this waypoint. 
d - The bot will crouch while trying to get to this waypoint. 
c - A camping/sniping point, the bot will often stand here if it has camping properties. 
x - Same as 'c', except the bot will crouch while camping. 
f - Wait for a func brush underneath this point before moving onto it. This is useful for 
elevators, moving platforms, and other such items so that the bot will wait until the object is 
under the point before advancing. 
x - This creates a one-way forward point. The bot will travel past this point, but when 
reversing on the trail, once he reaches it he will turn back and go forward again. This is a 
good last resort if you want the bot to jump off a tall ledge he can't get back up. However, use 
these points sparingly, as they make the bot much less efficient in getting places. 
y - This creates a one-way backward point. Same principle as the above, except the bot will 
only pass this point when following a trail in reverse order (5, 4, 3, etc). 
n - The bot will not perform visibility checks when moving to this point. Should also be used 
sparingly, as the bot can easily get stuck when moving to these if something prevents it from 
getting there. 
m - Sort of reversed from 'f'. The bot will only move here if there is NOT a func brush 
underneath this point. 
 
You can combine these flags however you wish. So if you wanted to add a point that the bot 
will jump to and only move to when a func brush is under it, you would use 
"bot_wp_addflagged jf" as the command. This parameter also accepts an additional argument 
for inserting within trails like bot_wp_add, so if you wanted to insert said point after point 5 in 
your existing trail, you would use "bot_wp_addflagged jf 5". 
 
bot_wp_switchflags - Switches the flags of an existing waypoint. Uses same flags as 
bot_wp_addflagged. So if you wanted to turn point 5 into a jump point but let it keep all its 
other existing properties, you would use "bot_wp_switchflags j 5". 
 



bot_wp_killoneways - This will remove all one-way (x and y) flags from all waypoints on the 
level. Can be handy sometimes when the distconnect and visconnect cvars flag waypoints as 
being one-way automatically. 
 
bot_wp_tele - Teleport to a specific waypoint by index. By default it will teleport to the last 
placed waypoint, but an additional argument will allow you to specify any number (so use 
"bot_wp_tele 5" to teleport to waypoint number 5, for example). 
 
bot_wp_save - Once you are done placing waypoints, this will write the route file out and do 
all the calculations necessary at save-time. This file will be automatically saved as the same 
name as the map, with the extension .WNT in your ‘fmr/botroutes’ folder. 
 
 
 
Making Waypoints 
 
When you load a map using bot_wp_enable you will be placed at a random spawn point on 
the map, you can start waypointing from this position or you can walk to another position and 
start from there. 
 
For the bots to navigate a map, they will need waypoints, points in “space” in which they can 
move between. Each time you place a waypoint using the /bot_add_wp command, you will 
create a “point” on the map, for which the information will be displayed in the console. Once 
you have placed two or more points, these points will be visually linked together with a red 
line, i.e. point 1 to 2, 2 to 3 and so forth. This will show you the path, or route, which the bots 
will navigate during a game. Apart from this, it also gives the user a visual representation of 
where you have added waypoints, where you have been and where you need to go. 
 
TIP: To save you typing in the /bot_wp_add command all the time, simply bind the command 
to a key, or better yet, to your mouse button. Use the ~ key to bring down your console and 
type: bind mouse1 /bot_wp_add. This will bind the command to your left mouse button, and 
all you need to do is press the button every time you want to add a command. Remember to 
change the key back to its original command (usually attacking) in the menu before you go to 
play the game. 
 
As you walk around your map placing waypoints, remember not to place the waypoints too far 
apart, say 3 seconds running distance as a rough guide. Remember to always check that 
your waypoints are not bypassing through solid objects such as walls or impassable objects – 
even if they are barely clipping a wall, you should consider deleting the waypoint and re-
adding the waypoint, otherwise bots can become stuck and lessen the enjoyment of playing.  
 
The most challenging part of making waypoints is dealing with obstacles and tricky terrain, 
and the associated commands. For instance, let’s take a drop-off or ledge on the map that 
can’t be jumped over from the other when coming from the other direction. If you simply walk 
over this ledge while making waypoints and don’t add any special commands for dealing with 
it, then when a bot tries to follow this waypoint in reverse order they will walk straight into the 
ledge and expect to be able to get up the ledge, but can’t. This means they will stand there 
trying to get up the ledge, but realistically they can’t – this is where the various 
bot_wp_addflagged commands come in to the picture. To make it so the bot will jump off this 
ledge but no try and go back up it, add a ‘/bot_wp_addflagged x’ just after the ledge drop off. 
This will ensure that once a bot gets to the point below the ledge, they will simply turn around 
and go back the way they came. This isn’t the most efficient manner of waypointing, but it 
sure beats them trying to get up a ledge they can’t. Also if you see a bot running around in 
circles usually below a hole or walkway, this usually means they are trying to get up to the 
hole but they can’t, once again you need to make sure you have used the appropriate 
‘/bot_wp_addflagged’ command to make sure they don’t try to get to levels which they can’t 
reach. 
 
Make sure you have the waypoints going over flags, weapons and any other important 
pickups in the level – or the bots might not pick them up! 



 
After you feel you have finished the waypoints for the level, then it comes time to save it. All 
you need to do to save the waypoints to a file is to type the command /bot_wp_save into the 
console. When you save the waypoints to a file, the code will run various checks on the 
waypoints and repair any broken or non-linking points, then report back to you. This can take 
anywhere up to 5 or 10 seconds, depending on the number and complexity of the waypoints. 
Generally you can ignore any of the yellow messages saying that various waypoints were 
repaired, although if you get a red message saying two waypoints could not be joined, etc, 
then you may wish to consider fixing it. You should now have a new .WNT file in your 
‘botroutes’ folder, which has the same name as the map you made the waypoint for. 
 
To test out your waypoint file, simply start up a game of deathmatch, then load some bots and 
enjoy! 
 
 
 
Editing Existing Waypoints 
 
To edit an existing waypoint file, simply run enter that map in waypoint mode and it will load 
the existing waypoint file. 
 
 
 
Importing Downloaded Waypoints 
 
If you have downloaded a set of waypoints from the Internet, or have acquired them from a 
similar source, then importing them for use is very simple. All you need to do is get the base 
.WNT file, which may require you unzipping the .ZIP or .PK3 file it came in, and placing the 
file in your ‘fmr/botroutes’ folder. 
 
 
Hope this helps in getting you on the track to making waypoint files.  
 
 


