Smooth Physics: Welcome to the Real World!

By: Stalker (Apoc Entertainment, STvsSW 1&2)

A2 has 3 different physics modes (smooth, hover, and borg), only one of which is really necessary for most modders. This is smooth physics, and in this tutorial I will show you how to apply these physics settings to a ship or object to get it to act however you want it to act. lets start off by dissecting a smooth physics file, fincursionphys.odf:

(Smooth physics basically takes your craft’s current speed (at any point in time), and scales your ship’s maneuverability based on the settings you set in this physics file. If the speed increases, the maneuverability will increase, and vise versa. A1 Physics (Hover physics), gave a ship the same maneuverability no matter what its current speed.)

// Smooth Physics Parameters for the Destroyer

physics = "smooth"

(This tells A2 that you want to use smooth physics as your physics model)

// Ship's full throttle forward speed when under impulse power.

combatSpeed = 140

impulseSpeed = 200

warpSpeed = 500

(The first value, combatSpeed, is a value the ship switches to when it fires a weapon (engages in combat). This speed does not use the values in this file, but does use the combatPhysicsFile which is referenced below.)

(The second value, impulseSpeed, is the standard cruising speed the ship will use as it’s “top speed” when not going at warp. All values in this file affect performance at this speed.)

(The third and final speed value, warpSpeed, is the speed the ship will accelerate to when it enters ‘warp’. The only value in this file that really affects warpSpeed performance is pathLeadDistance.)

// When we're moving, if we're closer to our goal point than

// this, don't try to circle around and hit it. Just stay where

// you are. This is usually 50,

tooCloseToTurn = 40;

(This tells the ship to ask itself whether or not to turn towards a target if it’s right beside the ship, essentially. This is also, by extension, the minimum distance away from it’s current position a ship will move. Usually just leave this at 50.)

// When path following, we follow a point on our path that's

// this far in front of us. This is usually 150

pathLeadDistance = 150;

(This value tells the ship to plot a path to it’s destination, but to actually follow a point on that path (the pathLead) a certain distance away from itself. This is essential in correct pathfinding, and a bad value can cause very strange things to happen (like spinning ships). The Higher your warp speed is over 600, the higher your path lead distance should be in order to not break pathfinding. A good rule of thumb is: If your warp speed is above 600, then change pathfinding to equal the current warp speed.)
//

// Smooth Physics Parameters

//

// These parameters all scale with impulse speed,

// so that faster ships more or less do everything

// faster. If that's too irritating we can change it.

(This says it all. ALL values in this section, unless otherwise noted, are assuming 1 = 100%. Multiply these values to get the % value of what you’re controlling. There is no apparent upper bound to these values, so it is possible to have 200% in some cases, or more.)

// How fast it accelerates forward, normal is 1

forwardAccel = 1;

(This value tells the ship how fast it can accelerate foward (speed up).)

// How fast it decelerates, fraction of forwardAccel

backwardAccel = 1;

(This value tells the ship how fast it can decelerate (slow down).)
// Maximum turn rate, normalized to 1

turnOmega = 1;

(This value controls the abosolute maximum turn rate based on current impulseSpeed. A lower turn rate equates to a slower turn.)

// Maximum turn acceleration/deceleration, normalized to 1, scales with turnOmega

// scales with turnOmega

turnAlpha = 1;

(This value controls the speed up to max turn rate, and the slow down to stop.)

// Maximum pitch rate, normalized to 1

pitchOmega = 1;

(This value controls the abosolute maximum pitch rate based on current impulseSpeed. A lower pitch rate equates to a slower pitch up.)
// Maximum pitch acceleration/deceleration, normalized to 1, scales with pitchOmega

pitchAlpha = 1;

(This value controls the speed up to max pitch rate, and the slow down to stop.)
// These do not scale with impulse speed

// How much it rolls when it turns, normalized to 1, set to 0 to eliminate roll

rollCoupling = 2;

(This number allows you to specify how much (or if it should have) roll the ship has. Typical Trek ships use a roll of 2 or 3, while some ships (such as big ones from Star Wars), use a roll of 0.)

// How car-like this is. 0 means can't turn without moving, like a car.

// 1 means turns fully even when still, more like a spaceship.

turnOmegaFractionAtRest = .2;

turnAlphaFractionAtRest = .2;

pitchOmegaFractionAtRest = .2;

pitchAlphaFractionAtRest = .2;

(These are very similar to the original Omega/Alpha values above. However, these values determine whether or not the ship can “turn on a dime”. At 0, a ship must be moving foward in order for it to turn at all.)

// Most ships return to pitch = 0 degrees. Pitch Default is the pitch

// to return to in degrees upward, and speed is how fast it does so.

// zero or negative speed means to stay at your last pitch.

pitchDefault = 0;

pitchDefaultSpeed = 1;

(These values tell the ship wether to ‘settle down’ from pitching up/down. PitchDefault is the pitch the ship returns to when it ‘settles’. PitchDefaultSpeed defines how quickly it does so.)

// Determines how to dampen the turning rate once it's close to it's target.

// 1 means to square it, to make it even more dampened.

turnControlSquared = 0;

// this is the angle in degrees to make it stop damping

turnControlAngle = 20;

forwardControlDistance = 70;

(These values control how much the turning rate of a ship is slowed when it’s considered to be ‘close’ to it’s target. TurnControlSquared allows you to determine if the ship uses the traditional damping formula, or to square it... to damp the turning even more. TurnControlAngle is the angle it’s foward facing must be from the target in order to stop the damping, and fowardControlDistance specifies the distance for damping to be stopped.)

// Combat Physics File

combatPhysicsFile = "sdestcombat.odf"

(The physics file referenced in case the ship goes into combat mode.)

Next, we will dissect the combat physics file, the second part of the smooth physics model:

(The values here do the same thing as the values in the main smooth physics file, except that the combatSpeed value is the only value they are applied to. Combat physics values should be lower (if possible) than standard maneuvering values, unless a ship gets a boost of power and speed during/before combats, in which case these values would be higher.)

// Smooth Physics Parameters for the Destroyer in combat mode

// mostly just goes slower, turns and all.

// How fast it accelerates forward, normal is 1

forwardAccel = .5;

// How fast it decelerates, fraction of forwardAccel

backwardAccel = 1;

// Maximum turn rate, normalized to 1

turnOmega = .1;

// Maximum turn acceleration/deceleration, normalized to 1, scales with turnOmega

// scales with turnOmega

turnAlpha = .5;

// Maximum pitch rate, normalized to 1

pitchOmega = .1;

// Maximum pitch acceleration/deceleration, normalized to 1, scales with pitchOmega

pitchAlpha = 1;

