Fierfek’s Mapmaking Guide
Contents:

Introduction

PART 1: Basic Modding

1. First Map Mistakes

2. Creating the Map

3. The Editor

4. Command Posts

5. Objects

6. The LUA

7. Munging

PART 2: Advanced Modding

8. Vehicles

9. Planning/Barriers
10. Localizing

11. The Sky

PART 3: What’s Next

12. Packaging
13. Playing Other People’s Maps

PART 4: Custom Sides

14. The Main Idea

15. Skinning

16. The Lua: Custom Sides

17. Weapons Changes

PART 5: Units Stuff

18. Adding Locals

19. Adding Hunt

20. Ubermode

21. Having more than 6 Classes
Introduction:

Hi, I’m Fierfek. Fierfek is a curse used by Clone Troopers. It is Huttese for poison. If you have played Republic Commando, you may have hear Sev saying things like, “Fierfek, there’s a Trando Merc.” Anyway, I have been around a lot of maps, so I know which kinds people like. So, this is everything I know about mapping.
There are a couple rules I’ll need you to follow. If you don’t, then I’ll upload a virus to your computer and delete all of your data (well, not really).

Rules:

- Read the guide thoroughly. Don’t just skim it, or you won’t learn.

- If you don’t understand something, read it again. And again. And again until you understand it, or have concluded it is in a different language, and therefore impossible to read.

- DON’T GIVE UP. Seriously, when you encounter a problem, don’t just give up. I promise you, in your modding career, you will encounter at least one problem.
- Ask for help. Get an account on Gametoast.com/forums/index.php. It is the best Star Wars Battlefront Modding site in the world.

- Start Small. I’ll say this again, but it is important. You probably want to make an epic, like Mav’s latest map: “The Big L”. You can’t start with that kind of map. The Big L was a hard map to make, and took Mav a while. Trust me, it is impossible for you at this stage.

- Don’t release your first map. Unless you are ABSOLUTELY SURE it is good, don’t release it. Many modders have just changed the terrain and added in a “rolling hill”, and concluded that their map is amazing, and that they should show everyone else. It doesn’t end out pretty.

Those are my rules. If you don’t like them, then you don’t have to mod. Your choice.

And one thing about the guide:

Replace MAP with your map’s 3-letter codename. You’ll learn what that means later.
UPDATE 3.0 – I have added a section on custom sides, then parts on locals, adding a hunt mode, having huge battles, and adding more than 6 units per side.

PART 1: Basic Modding

Part 1. First Map Mistakes
This section is about first maps. I have notice a couple things that really tick people off about first maps. Here they are:

- That Yavin ground texture (this is always a sign of an amateur)

- That Yavin sky (again, anything Yavin is a sign)

- First maps are often completely flat. It doesn’t matter if that suits your map’s setting. Give the map some hills. You honestly don’t know how important this is. Flat maps suck.

- First maps are often HUGE. First mappers don’t realize that the 2 command posts they placed will take 10 minutes to walk across. Make sure the map is not huge – the indoor maps of BF2 (Death Star, Tantive IV, Poliss Massa, etc.) barely take up any space in Zeroeditor. I believe each square is 1 meter.
- Don’t start with an indoor map. You might say, “But Squipple’s ‘Ancient Research Facility’ was a first map, and that was indoor!” Well, that map was exceptional. Make an outside map first. They are a lot easier.

- Don’t flood the map with water. Water requires a lot of extra programming to get working. Don’t start with water.

- Change the setup of the 4 command posts. Keeping them in that box formation is boring, and we’ve seen it a million times. Move the command posts around.
- Change the heroes. Please, no Anakin, Maul, Han, or Boba. They are the defaults, and must be changed. More on changing them later.

- Go basic. Try not to go insane with platforms going to 10 different command posts. Those maps aren’t very easy to make.
I think those are all the signs of a first map. Notify me if you see any others.

Part 2. Creating the Map

Go to Start\All Programs\Lucasarts\Star Wars Battlefront II. Open Mod Tools. Click Star Wars Battlefront Mod Tools. The Icon should look like a 3d puzzle being put together. A screen like this should come up:

[image: image1.png]
Our map will take several minutes to make. Don’t do anything else on your computer, as you will likely freeze the munger. After several minutes, a notice will come up with info about munging it.
[image: image2.png]
You don’t need to worry about that for now. Just hit okay. Go to your BF2_Mod Tools directory, and find the folder title “data_MAP”. Open it, and open zeroeditor. It’s icon should look like some sort of wrench. It will open, and we are into our next section.
Part 3. The Editor

This is the editor, where most of the main action will happen.
You should be at a screen like this:

[image: image3.png]
Hit Load (see the screen).
Now you will be at a screen something like this:

[image: image4.png]
Navigate to your Mod directory (data_MAP). Go into the Worlds folder, MAP, world1. you should then be here:

[image: image5.png]
Hit MAP. This will bring up a screen like this:

[image: image6.png]
Check conquest, common, conquest, and build accurate object collision. Hit OK.

If zeroeditor freezes while opening, just leave it. After a couple moments (be patient), you will be in the editor. There are a couple of basic controls you will need for navigating the editor:
WASD: Move your view around

Tab: Enable Mouse Free-Look

Hold C: Move object/regions Left, Right, Up, and Down

Hold X: Rotate objects

Hold Left Mouse Button: Red Line Movement
Hold Right Mouse Button: Green Line Movement

Hold Mouse Wheel Down: Blue Line Movement

All right, now that we have those figured, we can continue. It doesn’t matter if you don’t understand all this. I will go into more detail later.

Move around. After moving around for a while, you will notice you are in a level like this:

[image: image7.png]
These are the hated Yavin textures. No one likes these. If you are going to make a successful map, you must change these. See the boxes outlined above? This is your selection of Edit Modes. Click texture. There will be a palette on the right like this:
[image: image8.png]
There are 16 boxes, numbered 0-15. You will notice the top 4 have colors in them. Click 0. Now there will be a palette on the left like this:

[image: image9.png]
We will focus on the outlined part for now. Lets get the texture from Endor, okay? To do that, go back to your BF2_Mod Tools directory. Find the assets folder. Go to worlds, then END. Go into world1. Find end1_lowresterrain.tga. Put it in your world1 folder. Now click browse in the editor. Find the file you just put in your folder. Select it. Delete the text in the DETAIL: box. Do the same will all 4 colored boxes. If you did everything right, your map should now look like this:
[image: image10.png]
Much better. Now that the gross Yavin textures are gone, let’s save. Go to the top left, and click save. Navigate in the window to your world1 folder. Overwrite the world file there.

Now let’s explore height. Click height in the edit modes panel. Now a screen on the left will look like this:

[image: image11.png]
Let’s play with this now. Change width and depth to 5 each. Change MODE: to raise. Change shape to circle. Now go to a spot on your map. You will have a little green circle following your cursor. Hold down the left mouse button in one spot. The terrain will start to rise. If you hold down the right mouse button, it will start to sink. Play around with this a little. Make some hills, and some dips. FLAT MAPS SUCK. If your map is flat, you will get minus points. Play with this for a few minutes, and get used to it. These are the other features:

PAINT: When you hold the mouse button down and drag this over the ground, it will set it to the original ground level.

SPRAY: This is a slower version of paint.

BLEND: This will smooth out the terrain, so it is not made of weird sharp cuts.

Next section:

Part 4. Command Posts

This is one of the most important parts of the guide. Command posts are the main part of Star Wars Battlefront. In order to have a good map, you must have good command posts.
[image: image12.png]
In the active layer part (outlined), click change. Another palette like this will come up:

[image: image13.png]
Click conquest, then exit the palette.

In the edit mode, click object. A new palette will open. The 2 important ones you want here are these ones:
[image: image14.png]
The left one is the edit object palette. The bottom one says what objects you have in your level. So far, the only objects are 4 command posts. We’ll make another command post in this step. In action, at the top of the left palette, select ‘select’. Click CP1 in the bottom palette. Now, in the left palette, click ‘place’. Before you place it, in the very top palette, next to the load/save one, is SHOW:. Make sure objects, regions, and paths are selected. You will now see some weird shapes on the maps. Zoom in on one. It looks like this:
[image: image15.png]
The blue cylinder is the capture region. This is the region that indicates where you must be to be able to capture the command post. If a trooper is standing within this region, the capture icon will appear, and they will start capturing the command post. The little spheres connected to each other make up the spawn path. Each of these circles represents a place where a trooper will spawn. Each of these are crucial to making a command post.

You will also notice the 4 command posts are in a box:

[image: image16.png]
As I said before, this is a sign of being an amateur. We will now focus on moving them around. We will place the 5th command post later. Select one of the command posts. Hold down C. You will now see red, green, and blue lines across it.
[image: image17.png]
It doesn’t matter if they are not very visible. If you can’t see the red lines, that just means the command posts are grounded. Try moving the command post around. Hold down the left mouse button to move the object along the red axis. Hold down the right mouse button to move the object along the green axis. Hold down the middle mouse button to move the object up and down along the blue axis. Move the command post to a different position on the map. Now, you need to move the capture region to the command post. In edit mode, select region. Now, the palette on the left will look like this:

[image: image18.png]
Make sure action: at the top is on Select Region. Select the region that was originally next to the command post you moved. Move it in the same manner you moved the command post. Move it over to the command post’s new position. Once you have done that, choose Path in edit mode. Now the left palette will look like this:
[image: image19.png]
Select Move in the action part of the palette. Go to the path where the command post and region were moved from. If you hold down the left mouse button, you can move each circle one at a time. If you hold down the right mouse button, you can move the whole path at once. Move the path to the command post’s new position. Now you have moved the whole command post. Do this to all the command posts, moving them around so they don’t resemble the shape of the original box at all. Make sure they are about the same distance to each other though. BIG MAPS SUCK. Now, let’s add another command post. Go back to objects in Edit Mode. Select CP1, and then select place in Action. Place the command post close to the other 4. Now, you must set the command post’s properties. At the bottom of the left palette, you will see this:
[image: image20.png]
Write CP5 in Label. Set team to 0. 0 is neutral, 1 is Republic/Empire, 2 is CIS/Rebels, 3 is locals. Now go to the right palette. You will see these fields:

[image: image21.png]
In CaptureRegion, type cp5_capture. In SpawnPath, type cp5_spawn. Now, you must make the capture region for this new command post. Choose region from edit mode, and select New Group. Select cylinder. Now click near the command post. A huge cylinder will be over it. Select ‘select region’. Now, click the new region.
[image: image22.png]
In the left palette, in region ID, it says region0. Change that to cp5_capture. Now, above, to the right, you will se another palette.

[image: image23.png]
Change both of these to cp5_capture. Now, in height (back in the left panel), set X, Y, and Z to 5 each. Now, hold C and use the middle mouse button to lower it to go into the ground. Make sure it looks like this:

[image: image24.png]
Now, you need to make the spawn path. Go to Path in edit mode. The left palette will look like this:
[image: image25.png]
Press new path. A new path will come up in Path List, named Path 4. In Path Name, rename it cp5_spawn. Now, click about 6 or 7 times around your command post. Spheres will appear. This is the spawn path. Now, you have created another command post. There is only one step left to finishing the command post, which will be explained later, in Part 6. Now that you have made another neutral command post, you understand how to make command posts. One last thing about paths: to change their height, hold down shift and the right mouse button. This will allow you to slide the path up and down.

The next section will teach you to handle objects in Zeroeditor.

Part 5. Objects
In order to have a good map, you must have objects in it. There is not one map in Star Wars Battlefront that does not have objects in it. Objects are very important, and you will now learn how to insert them.

First, choose the world you want objects from. Since we have Endor terrain, let’s do Endor. In the assets folder, find worlds and END again. This time, highlight ODF and MSH. Copy them to your world1 folder. Now, in the Zeroeditor, select objects from Edit Mode. The Left Palette looks like this:
[image: image26.png]
Click Browse. Find your world1 folder, and enter the odf folder. Wow, that’s a lot of files! Each of these files is an object from Endor. Let’s say we want one of the command posts to be behind some trees. Find end_prop_leaftree. Click it. Now, in the palette, make sure Place is selected at the top. Now, place some tress around the 5th command post. This is very basic. You can browse for other objects, and insert anything you want. You could insert the odf and msh folders from any world, and place whatever you want in your world. Using Multi-Select, you can select multiple items at once, and copy/paste. Play around with the objects. They are really what make the level. A couple pointers:

- Make sure they are not floating

- Make sure you are not making it obscure. Having a bunker in the middle of nowhere doesn’t really fit. Neither does 10 techno union ships stacked on top of each other.

- Use crates/barrels and the such. They help with cover during a battle.

Part 6: The LUA File

For now, we are done with Zeroeditor. Now, we will take a look at the script. In this part, we will change the heroes for our level, and do the last step for adding command posts.
Go to data_MAP. Now, enter the common folder. Then go scripts\MAP. You should see 9 files. We want 2 of them:

MAPc_con

MAPg_con

There are two files named that – one is a lua, and one is a bak. Don’t edit the baks, just the luas. The ones that start with MAPc are for the clone wars. The MAPg ones are for the galactic civil war. We will start with the command post. Open MAPc_con with Notepad. Office Word will not work here, it must some sort of Notepad. You will see a screen like this:

[image: image27.png]
This is the LUA file. This is what makes the game work. There are 2 parts we need to change. The first is this:
 --This defines the CPs. These need to happen first

 cp1 = CommandPost:New{name = "cp1"}

 cp2 = CommandPost:New{name = "cp2"}

 cp3 = CommandPost:New{name = "cp3"}

 cp4 = CommandPost:New{name = "cp4"}
Here, you need to add one more line. Copy the last line, so now you have this.

 --This defines the CPs. These need to happen first

 cp1 = CommandPost:New{name = "cp1"}

 cp2 = CommandPost:New{name = "cp2"}

 cp3 = CommandPost:New{name = "cp3"}

 cp4 = CommandPost:New{name = "cp4"}
 cp4 = CommandPost:New{name = "cp4"}
In the last line, change the cp4’s to cp5. So now, you end up with this:

 --This defines the CPs. These need to happen first

 cp1 = CommandPost:New{name = "cp1"}

 cp2 = CommandPost:New{name = "cp2"}

 cp3 = CommandPost:New{name = "cp3"}

 cp4 = CommandPost:New{name = "cp4"}
 cp5 = CommandPost:New{name = "cp5"}
This tells the game how many command posts are there. You need to do this in all 4 files listed. There is one other part. Scroll down until you find:
 --This adds the CPs to the objective. This needs to happen after the objective is set up

 conquest:AddCommandPost(cp1)

 conquest:AddCommandPost(cp2)

 conquest:AddCommandPost(cp3)

 conquest:AddCommandPost(cp4)
This adds the command posts to the objective, so that you need to capture all of them to win. As in the last one, copy the last line, and change to cp5. This is what you end up with:

 --This adds the CPs to the objective. This needs to happen after the objective is set up

 conquest:AddCommandPost(cp1)

 conquest:AddCommandPost(cp2)

 conquest:AddCommandPost(cp3)

 conquest:AddCommandPost(cp4)
 conquest:AddCommandPost(cp5)
Now your command post is added. Make these changes to all 4 of the files listed before.
Now we will change the heroes. These are who we will change them to:

Anakin (Mace Windu

Darth Maul (Jango Fett

Han Solo (Chewbacca

Boba Fett (Darth Vader

Now, go to assets. We need to find the coded names of these heroes. Go into the sides folder, then to rep, then odf. Here are all the republic files. Sort by name, and find the section where everything is sorted by rep_hero_(hero name). The default is rep_hero_anakin. We want Mace Windu. So scroll down until you find him. He is rep_hero_macewindu. Write that down somewhere. Now, let’s find Jango Fett. Go to the cis folder this time, and the odf folder. Find cis_hero_jangofett. Write that down too. Now, for the all folder. Find all_hero_chewbacca. Write that down too. Last, but not least, the imp folder. Find imp_hero_darthvader. So, these are the coded names of the heroes we want:
Rep_hero_macewindu

Cis_hero_jangofett

All_hero_chewbacca

Imp_hero_darthvader

Pretty simple, huh? Okay, back to the script files (ModID\common\scripts\ModID). Enter MAPc_con again. Now, go down to this text:

 ReadDataFile("SIDE\\rep.lvl",

 "rep_inf_ep3_rifleman",

 "rep_inf_ep3_rocketeer",

 "rep_inf_ep3_engineer",

 "rep_inf_ep3_sniper",

 "rep_inf_ep3_officer",

 "rep_inf_ep3_jettrooper",

 "rep_hover_fightertank",

 "rep_hero_anakin",

 "rep_hover_barcspeeder")

 ReadDataFile("SIDE\\cis.lvl",

 "cis_inf_rifleman",

 "cis_inf_rocketeer",

 "cis_inf_engineer",

 "cis_inf_sniper",

 "cis_inf_officer",

 "cis_inf_droideka",

 "cis_hero_darthmaul",

 "cis_hover_aat")
This tells the level which files to load for the game. As you can see, it has loaded the units for battle, as well as some vehicles, and the heroes. But here, it says ‘rep_hero_anakin’ and ‘cis_hero_darthmaul’. These aren’t the heroes we want. So, enter your heroes in. Now, it should look like this:

 ReadDataFile("SIDE\\rep.lvl",

 "rep_inf_ep3_rifleman",

 "rep_inf_ep3_rocketeer",

 "rep_inf_ep3_engineer",

 "rep_inf_ep3_sniper",

 "rep_inf_ep3_officer",

 "rep_inf_ep3_jettrooper",

 "rep_hover_fightertank",

 "rep_hero_macewindu",

 "rep_hover_barcspeeder")

 ReadDataFile("SIDE\\cis.lvl",

 "cis_inf_rifleman",

 "cis_inf_rocketeer",

 "cis_inf_engineer",

 "cis_inf_sniper",

 "cis_inf_officer",

 "cis_inf_droideka",

 "cis_hero_jangofett",

 "cis_hover_aat")
See? Now, it tells the game to load those heroes. Scroll down to:

 SetHeroClass(CIS, "cis_hero_darthmaul")

 SetHeroClass(REP, "rep_hero_anakin")
This tells the game who to set the heroes to. Change these to our ones, so it says:

 SetHeroClass(CIS, "cis_hero_jangofett")

 SetHeroClass(REP, "rep_hero_macewindu")
Now, this file is ready. Now, onto the Galactic Civil War One. Do the same, except instead of changing the heroes to mace windu and jango fett, change them to Chewbacca and darth vader. Everything is the same, except you are changing from boba fett and han solo instead of Anakin and maul.

Once you have done this, we are done with LUA’s for now. I will not go into more advanced LUA work in this guide, but LUA’s allow you to make custom sides, add objectives to missions, and other cool things.
Part 7: Munging

Now I will tell you how to munge. Go to your mod directory, then _BUILD. Click Modtools VisualMunge. Now you will have a screen like this:
[image: image28.png]
Click whatever categories you have changed. If you have changed scripts and other things in the common folder, make sure common is checked. If you have done any localizing, make sure that is checked, etc. Now, click Munge. Wait several minutes for it to be done munging. Then, a notice like this will come up:
[image: image29.png]
A Notepad will also come up, telling you the errors. There are 2 kinds of things that will appear in here: warnings and errors. At the bottom of each section in the munge log, you will see a line like this:

X Errors X Warnings
You can ignore warnings, but if there are errors, don’t even bother testing your map, because somethings went wrong.

Click OK, then you can go run Battlefront II. Your level is in the selection screen!! Now you can play your level you made! Have fun modding!!
PART 2: Advanced Modding
Part 8. Vehicles

Okay, so you made your map, and are having fun playing it in BF2. But you want to have some way to get around your map besides walking. I don’t blame you, I would too. So, in this section, I will teach you to add in vehicles, and we will add in some speeders.
First, we need to figure out the coded names of the speeders. Go to each side folder, but instead of going into odf, open the req file (the one without shell on the end). There is a list of vehicle codenames. The ones we want here are:

Rep_hover_barcspeeder

Cis_hover_stap

Imp_hover_speederbike

(the rebels don’t have their own speeder, so they use the imperial one)

Okay, open up zeroeditor. Make sure you are in the conquest layer. Now, in objects, click browse. Go to ModID\common\odfs. Find com_item_vehicle_spawn. You will also need to create control regions for your command posts. Control Regions are made exactly the same way as capture zones, except for a few differences:
- Control Regions are not written as cp#_capture, but cp#_control

- Control Regions are squares, not cylinders

- Control Regions should be 10 height instead of 5

- Control Regions should be placed next to the command posts instead of over them
Edit the command posts so that the palettes look something like this:

[image: image30.png]
Then, make the control regions. Place them next to the command posts. Now we will make vehicles.

Go back to objects, and find com_item_vehicle_spawn again. Place 2 or 3 next to each command post, outside the capture zone/spawn path, inside the control region. You don’t want them inside the spawn path because if you do, people would spawn inside vehicles (which would be a little disturbing (). The right palette will look like this:

[image: image31.png]
Now here it gets a bit repetitive. In ControlZone, write the command post number. So, if it is cp1, write cp1, if cp2 write cp2, etc. In Spawn Count, put 1. In Spawn time, put 30.0. In ExpireTimeEnemy, put 30.0. In ExpireTimeField, put 60.0. In DecayTime, put 30.0. Now, you need to specify what class of vehicle you are putting in. Each field (find more by pressing page dn) specifies a kind of vehicle. The ones you need to fill in are:
ClassAllATK

ClassCISATK

ClassImpATK

ClassRepATK

ClassAllDef

ClassCISDef

ClassImpDef

ClassRepDef

Now, each of these is for a side. So, for the All and Imp ones, type:

Imp_hover_speederbike

For Each of the Rep ones, type:

Rep_hover_barcspeeder

And For Each of the CIS ones, type:

Cis_hover_stap

Easy? Yeah, but you have to do that for every single vehicle spawner. It gets really tiring. You can do different vehicles kinds as well. Look through all the vehicle types in the side folder and req files. There are many different varieties.
Before the vehicles will work, we need to edit the LUA files again. Go to common\scripts\MAP. You need the same 4 we worked with before. Open MAPc_con. Find the text:

 ReadDataFile("SIDE\\rep.lvl",

 "rep_inf_ep3_rifleman",

 "rep_inf_ep3_rocketeer",

 "rep_inf_ep3_engineer",

 "rep_inf_ep3_sniper",

 "rep_inf_ep3_officer",

 "rep_inf_ep3_jettrooper",

 "rep_hover_fightertank",

 "rep_hero_anakin",

 "rep_hover_barcspeeder")

 ReadDataFile("SIDE\\cis.lvl",

 "cis_inf_rifleman",

 "cis_inf_rocketeer",

 "cis_inf_engineer",

 "cis_inf_sniper",

 "cis_inf_officer",

 "cis_inf_droideka",

 "cis_hero_darthmaul",

 "cis_hover_aat")

Now, remember, these tell the game what files to read. So, now we need to input our vehicles. Edit it so it looks like this:
 ReadDataFile("SIDE\\rep.lvl",

 "rep_inf_ep3_rifleman",

 "rep_inf_ep3_rocketeer",

 "rep_inf_ep3_engineer",

 "rep_inf_ep3_sniper",

 "rep_inf_ep3_officer",

 "rep_inf_ep3_jettrooper",

 "rep_hover_fightertank",

 "rep_hero_anakin",

 "rep_hover_barcspeeder")

 ReadDataFile("SIDE\\cis.lvl",

 "cis_inf_rifleman",

 "cis_inf_rocketeer",

 "cis_inf_engineer",

 "cis_inf_sniper",

 "cis_inf_officer",

 "cis_inf_droideka",

 "cis_hero_darthmaul",

 "cis_hover_aat",

 “cis_hover_stap”)

See? We added cis_hover_stap. Now the game knows to read that file. Do the same to MAPc_con.lua. Now, onto the GCW files. Open MAPg_con. Find the text:

 ReadDataFile("SIDE\\imp.lvl",

 "imp_inf_rifleman",

 "imp_inf_rocketeer",

 "imp_inf_engineer",

 "imp_inf_sniper",

 "imp_inf_officer",

 "imp_inf_dark_trooper",

 "imp_hero_bobafett",

 "imp_fly_destroyer_dome")
Remember, no Rebel files need to be read, because they are borrowing the Imperial’s speeder. Edit it so it says:

 ReadDataFile("SIDE\\imp.lvl",

 "imp_inf_rifleman",

 "imp_inf_rocketeer",

 "imp_inf_engineer",

 "imp_inf_sniper",

 "imp_inf_officer",

 "imp_inf_dark_trooper",

 "imp_hero_bobafett",

 "imp_fly_destroyer_dome",

 “imp_hover_speederbike”)
See? We added imp_hover_speederbike. Get used to fiddling with these LUA files. Do the same to MAPg_con.lua. Now, vehicles should spawn in your map. The next section will teach you to make the AI smarter, so they know where to walk.

Part 9. Planning/Barriers

This is probably one of the most boring parts of making a map, but one of the most crucial. No one likes it when the AI just stand around in a circle, and don’t do anything. So, sadly, this step is neccasary.
In Zeroeditor, pick planning from Edit Mode. The Palette looks like this:

[image: image32.png]
First, let me tell you about this. You basically put down hubs on the ground, and connect them to each other with connections. The AI then walk along these paths. Simple, but this can be tricky. To place hubs, click new hub, and click on the ground. Drag to choose the size. Make tons of these. They are the points which the AI try to get to. Then, click new connection. Click on a hub. A line starts coming from it. Drag the line to another hub, and click the second hub. The line connects. Make lines connecting all the hubs. This will take a while to perfect, but as I said, it is crucial.

Okay, now that that is done, let’s do barriers. This is even less fun that planning. Click barriers from edit mode. This is the palette:

[image: image33.png]
Barriers basically tell AI “Don’t touch this!” You surround objects like crates or trees with them, so that the AI don’t run into them. Click on the ground, and drag the red line to choose the width. Then, drag again to choose final size. Surround all your objects that are in the way with these. Tiring, yes, but necessary.

The next section is pretty much just for fun, but you should try it out.

Part 10. Localizing

This is the step where you can change the name of your map, change people’s names, change weapon’s names, and change messages that are displayed. Go to data_MAP. Click the batch file editlocalize. After a few seconds, and screen like this comes up:

[image: image34.png]
Common\Sides lets you change the names of the troopers fighting in the army. There are tons of things you can customize in here. Note: Saving in this can take a long time, so be patient.

Part 11. The Sky
The Sky is an important thing in a level. The Yavin sky always ticks people off, so here I will tell you how to change the sky. We’ll do Endor.

Go to assets\worlds\END\world1. Find the file end1.sky, and copy to your world1 folder. Then open the end1.sky file in notepad. Scroll down to find this:

DomeInfo()

{
After this the file lists all the texture files it needs to make the sky work. They are all something like blank_blank_blank. These are the ones listed here:

sky_endor.tga

end1_sky_dome

end_sky_dome_sat
end_sky_dome_trees
end_sky_dome_death
end1_lowresterrain
So, go find these files in world1 (assets\worlds\end\world1). Copy them to your world1 folder. One last thing: we need to make the switchover. The game will read the file named MAP.sky. So, rename the old MAP.sky to old.sky. Now, rename end1.sky to MAP.sky. Now, your sky has made the switchover. Munge, and play!
PART 3: What’s Next

Part 12. Packaging

After you have tested your level thoroughly, and played around with it in zeroeditor, you can share it. Testing is extremely important. Check out Count_Zooku’s latest projects to see what happens when you don’t test levels. Check out the file Planet Onmanjon.

Now, you have a great level, and you want to share it with the world. Well, that is easily accomplished.
There are 2 ways to get your map packaged. One is easier, one is harder (but teaches you the setup of a addon map folder).

Easy Way:

Go to Program Files/Lucasarts/Star Wars Battlefront II/Gamedata/Addon. You MAP folder should be in there (if it isn’t, go to Users/Username/Appdata/Local/VirtualStore/Program Files/Lucasarts/Star Wars Battlefront II/Gamedata/Addon.)
Harder Way:

First, make a folder called the 3 initials you chose for your file (in our case, MAP). In that folder, make a folder called data. In that folder, make a folder called _lvl_pc. In that folder (lots of folders!) make a folder called your 3 initials again (MAP for us). Now, the first file you need in put in the first MAP folder, next to data. Go into data_MAP, and into the addme folder, then the munged folder. Get the file there, and copy to the new folder. Now, in the _lvl_pc folder. In data_MAP, go to the folder _lvl_pc. Get the files core and mission. Copy those to your new _lvl_pc. Now, for the last one. In data_MAP_lvl_pc, go into the MAP folder. Get the one file there, and put that in your new MAP folder. So in the end, you should have this:

A folder called MAP

In that folder, a file called addme, and a folder called data

In the data folder, a folder called _lvl_pc

In that folder, 2 files called core and mission, and a folder MAP

In the MAP folder, and file called MAP

Now, find some way to zip your file up to compress it. It is now ready to go! Now you can publish it!! Go to Filefront.com, and scroll down the left side until you see the link “submit files”. Follow the instructions, and upload your file. Have fun modding!!

Part 13. Playing Other People’s Maps

I have noticed that a lot of people on Filefront have no clue how to play other people’s downloaded maps. Here is how:

1. Download the Patch from Lucasarts.

2. Go to your game folder. Enter gamedata. Make a new folder in gamedata called addon. Stick all of the downloaded maps in here. Extract them so that the folder with the 3 initials is in the folder addon. So, it would look like this:

Star Wars Battlefront II\gamedata\addon\MAP

Get it? Okay good.
UPDATE:

Okay, I am adding a couple of new sections.

PART 4: Custom Sides

Part 14. The Main Idea

Okay, so you now have a map. But if you do a bit of study, you discover something called “Custom Sides”. Now, what this means is editing the units so that they:

- Have new Skins (How they look)

- Have New/Different Weapons

These are the main 2 parts of Custom Sides. They are both important. Nothing is different ingame if all you do is change the skins. And if you keep the original skins, it doesn’t matter how great your weapons are, because it will be boring.

So, in this part of the guide, I will tell you how to make custom sides. I must warn you though, you may have to read some parts a couple of times – some of this may be hard to understand. There will be fewer pictures in this section, as there is not much visual material to be had here. But don’t let that deter you! Custom sides are one of the keys to a great map.

The main idea:

With custom sides, you can make a completely new side, or edit an existing one. I find it easier to edit an existing one, so we will do that for this tutorial.

Let me give you a quick overview of the main kinds of files in a side:

- REQ’s: This stands for ‘Required’. The req files make it all happen – when you call for a unit in your lua, it goes to the req’s to find out where to find the unit. These are some of your main guys.

- ODF’s: These are the files that make things operate. Without them, you would only have a bunch of frozen people that are unable to do anything. These are very important.

- MSH’s: These files are the models. Without these, all of your people would be invisible. And this is not a good thing.
- TGA’s: These are the skins. These tell the unit what colors to be.

For this tutorial, we will not be editing any MSH’s.

Okay, so this is the list of which files call which. The chain of command, if you will:

1. Star Wars Battlefront II calls for

2. Your Map calls for

3. The Mission File calls for

4. The LUA Script calls for

5. The REQ Files call for

6. The ODF Files call for

7. The MSH Files call for

8. The TGA Files.

This is what makes your custom side run.

Okay, in the next section, you will learn how to skin units.

Part 15. Skinning

As I said before, one of the main parts of custom sides is makes new skins. The skins are the TGA files, remember?

Okay, first, we need to go get the assets for the sides. We’ll start with the Republic Side.

Go to the assets folder. Then go into sides. Get the folder REP. Right click, and hit copy.
Now, back into data_MAP we go. This time, go into the folder ‘sides’. Copy the rep folder in there. Delete the folder ‘tur’ in there. It is just taking up space. It is for turrets, which we will learn about later.

Okay, now you have the side in your map.

First, go into the rep folder, and take a look at the folders. You had better get used to it in there, because you will be spending a lot of time with these guys!

Now go into the ‘msh’ folder. Sort the files by type, and then scroll down to the TGA section:
[image: image35.png]
Now first, we have to know which files to edit, as there are a lot of them!
Go over to the ‘odf’ folder. Now, there is a large list of things that the republic side uses.

Now, the codename for the 501st Clone Trooper is ‘rep_inf_ep3_rifleman’ (see end of this part for a quick reference on clone codenames). So, go find that file in the ‘odf’ folder.

When you find it, open it in Notepad. It looks like this:

[GameObjectClass]

ClassParent = "rep_inf_default_rifleman"

[Properties]

GeometryName = "rep_inf_ep3trooper"

GeometryLowRes = "rep_inf_ep3trooper_low1"

FirstPerson = "REP\reptroop;rep_1st_trooper"
The first line calls for the unit’s properties (rep_inf_default_rifleman). We will deal with that later.
The next line calls for the model (and the model calls for the skin). We want this line, because it deals with the model, and the model deals with the skin.

Remember ‘rep_inf_ep3trooper’. Go back to the MSH folder, and find the MSH called ‘rep_inf_ep3trooper’. Generally, msh’s and their associating TGA’s have the same name. So now find the TGA called ‘rep_inf_ep3trooper’. Copy it to another folder.

Now for this step, you will need a program that can open TGA’s. Most people use a program called Gimp (I use photoshop though – I don’t like gimp much, and photoshop has WAY more features). You can download Gimp here.

Okay, once you have installed gimp or photoshop or whatever, open the program. I will perform this demonstration in Gimp, even though I don’t like it very much.

Okay, once you have opened it, you can see these screens:

[image: image36.png]
On the smaller screen, at the top, click file, then open.
Now, navigate to the TGA you copied. Open it.

Now, you should have this screen in Gimp:
[image: image37.png]
Recognize the colors from anywhere? This is obviously the Clone Trooper from BF2.

Okay, now take a look at the other palette:

[image: image38.png]
These are your editing options. Take a while to explore them – as you can see, there are lots of features!

Okay, so you probably want an epic skin. Here is one of my recent ones:
[image: image39.png]
This is a Shadow ARC Trooper.

But generally, you should start with something easy.
So, take Gimp and skin away!

Okay, I am done. This is an edited – Thanks to AQT for this Skin:

[image: image40.png]
Obviously, this skin doesn’t have any edits other than color change. But that’s a good place to start. Mess around with Gimp – it’ll take a while to master.

Okay, when you are done messing around with it, go up to file, and click save as.

Now you’ve got this screen:
[image: image41.png]
 Save it somewhere. When you hit ‘save’ at the bottom, this screen comes up:

[image: image42.png]
You see that RLE Compression is checked. UNCHECK IT!!!!! If you leave it checked, your skin will come out in completely different colors, and look completely terrible.

Now, you’ve saved your first skin!

Now, we shall apply it to the game. Copy your new skin. Go paste it into your rep’s msh folder. Make sure it replaces the original one.

Now, do some more skinning. These are the steps:

1. Open unit’s odf to see which skin it calls for.

2. Open the skin with Gimp.

3. Reskin!

4. Replace original file.

Okay, now that you’ve got skinning down, we’ll talk about what you need to do in the LUA to get your new skin ingame.

Clone Codenames:

501st Trooper – ‘rep_inf_ep3_rifleman’
501st Heavy – ‘rep_inf_ep3_rocketeer’

501st Sniper – ‘rep_inf_ep3_sniper’

501st Engineer – ‘rep_inf_ep3_engineer’

501st Commander – ‘rep_inf_ep3_officer’

501st Jettrooper – ‘rep_inf_ep3_jettrooper’

For the Phase 1 clones (the ones in bf1), just replace the ep3 with ep2.
Part 16. LUA’s – Custom Sides

Okay, so you have made your new skins. It took a while, I’m guessing. But trust me, it’s worth it.

Okay, so now for the next step: getting our new units ingame.

Go open your clone wars lua (data_MAP/common/scripts/map/MAPc_con). Now scroll down to this bit:

 ReadDataFile("SIDE\\rep.lvl",

 "rep_inf_ep3_rifleman",

 "rep_inf_ep3_rocketeer",

 "rep_inf_ep3_engineer",

 "rep_inf_ep3_sniper",

 "rep_inf_ep3_officer",

 "rep_inf_ep3_jettrooper",

 "rep_hover_fightertank",

 "rep_hero_macewindu",

 "rep_hover_barcspeeder")

 ReadDataFile("SIDE\\cis.lvl",

 "cis_inf_rifleman",

 "cis_inf_rocketeer",

 "cis_inf_engineer",

 "cis_inf_sniper",

 "cis_inf_officer",

 "cis_inf_droideka",

 "cis_hero_jangofett",

 "cis_hover_aat")
Do you remember what this bit is for?

It’s for loading which units you want in the game. 10 points.

Okay, so we haven’t changed the names of any units, right? Our unit is still called ‘rep_inf_ep3_rifleman’, right? It is. So, since this is still loading ‘rep_inf_ep3_rifleman’, we should be good, right? WRONG. This is reading from the original game files. We want it to read from our new files, right? Right. Okay, so to tell it to read our files, we do this:

ReadDataFile("SIDE\\rep.lvl",
Right before SIDE, we add in ‘dc:’ (without quotes). So now it should look like this:
ReadDataFile("dc:SIDE\\rep.lvl",
Do that to the republic and cis ones. So now, your loading section should look like this:

 ReadDataFile("dc:SIDE\\rep.lvl",

 "rep_inf_ep3_rifleman",

 "rep_inf_ep3_rocketeer",

 "rep_inf_ep3_engineer",

 "rep_inf_ep3_sniper",

 "rep_inf_ep3_officer",

 "rep_inf_ep3_jettrooper",

 "rep_hover_fightertank",

 "rep_hero_macewindu",

 "rep_hover_barcspeeder")

 ReadDataFile("dc:SIDE\\cis.lvl",

 "cis_inf_rifleman",

 "cis_inf_rocketeer",

 "cis_inf_engineer",

 "cis_inf_sniper",

 "cis_inf_officer",

 "cis_inf_droideka",

 "cis_hero_jangofett",

 "cis_hover_aat")
Okay, now onto the part where we set up the teams.

SetupTeams{

rep = {

team = REP,

units = 20,

reinforcements = 150,

soldier = { "rep_inf_ep3_rifleman",9, 25},

assault = { "rep_inf_ep3_rocketeer",1, 4},

engineer = { "rep_inf_ep3_engineer",1, 4},

sniper = { "rep_inf_ep3_sniper",1, 4},

officer = {"rep_inf_ep3_officer",1, 4},

special = { "rep_inf_ep3_jettrooper",1, 4},

},

cis = {

team = CIS,

units = 20,

reinforcements = 150,

soldier = { "cis_inf_rifleman",9, 25},

assault = { "cis_inf_rocketeer",1, 4},

engineer = { "cis_inf_engineer",1, 4},

sniper = { "cis_inf_sniper",1, 4},

officer = {"cis_inf_officer",1, 4},

special = { "cis_inf_droideka",1, 4},

}

}

 SetHeroClass(CIS, "cis_hero_jangofett")

 SetHeroClass(REP, "rep_hero_macewindu")
This part needs no special scripts to read from the mod folder, so leave this unchanged.

Okay, so now it is ready. Let’s go to the munger now. Here it is:

[image: image43.png]
But one thing – look here:

[image: image44.png]
It is telling the munger to not munge any sides! That isn’t what we want. So, using the drop-down menu, switch the “nothing” to “rep” or “everything”.

Now the munger looks like this:

[image: image45.png]
Okay, munge.

[image: image46.png]
Hit ok.

Now run BF2. If you did everything right, now your skins are ingame!!! Awesome!!

Now, onto the other important part of custom sides: weapons changes. Ready?

Part 17. Weapons Changes

Okay, now you’ve got the lua and the skins ready. But you want different weapons ingame, because or else the gameplay is completely unchanged.

So in this part, you will learn how to change a unit’s weapons.

First, we’ll start with the rifleman. Go to his ODF file (rep_inf_ep3_rifleman).

Here it is:

[GameObjectClass]

ClassParent = "rep_inf_default_rifleman"

[Properties]

GeometryName = "rep_inf_ep3trooper"

GeometryLowRes = "rep_inf_ep3trooper_low1"

FirstPerson = "REP\reptroop;rep_1st_trooper"
Remember this? Now, we want to change his properties. The top line deals with that. See the line that says ‘ClassParent’? That tells the odf where his daddy is. So, we need to change his daddy.

So his daddy’s name is ‘rep_inf_default_rifleman’. Let’s go give his daddy a piece of our mind.

Go open up the ODF ‘rep_inf_default_rifleman’.

Now you’ve got this:

[GameObjectClass]

ClassParent = "rep_inf_default"

[Properties]

WEAPONSECTION = 1

WeaponName = "rep_weap_inf_rifle"

WeaponAmmo = 4

WEAPONSECTION = 2

WeaponName = "rep_weap_inf_pistol"

WeaponAmmo = 0

WEAPONSECTION = 3

WeaponName = "rep_weap_inf_thermaldetonator"

WeaponAmmo = 4

WeaponChannel = 1

WEAPONSECTION = 4

WeaponName = "rep_weap_award_rifle"

WeaponAmmo = 4

WEAPONSECTION = 5

WeaponName = "rep_weap_award_pistol"

WeaponAmmo = 6

VOUnitType
= 121
It’s pretty obvious where it says what weapons it gets. Okay, so he is asking for the blaster rifle (rep_weap_inf_rifle), blaster pistol (rep_weap_inf_pistol), and the thermal detonator (rep_weap_inf_thermaldetonator), plus the 2 award weapons.

Okay, so let’s give this sucker a chaingun, commando pistol, and probe droid.
First, let’s go find the codenames in the odf folder.

Chaingun – “rep_weap_inf_chaingun”

Commando Pistol – “rep_weap_inf_commando_pistol”

Probe Droid – “rep_weap_inf_remotedroid”

So now go into the “rep_inf_default_rifleman” odf. Change each of the lines accordingly:

“rep_weap_inf_rifle” (“rep_weap_inf_chaingun”

“rep_weap_inf_pistol” (“rep_weap_inf_commando_pistol”

“rep_weap_inf_thermaldetonator” (“rep_weap_inf_remotedroid”

Now, you may want to make some ammo changes. This is the where the rifle used to be:

WEAPONSECTION = 1

WeaponName = "rep_weap_inf_chaingun"

WeaponAmmo = 4
But the chaingun doesn’t use ammo, it overheats. So change the “WeaponAmmo” to 0. Also, switch the remotedroid ammo to 1 or 2. 4 remotedroids is way too many!
Now, you may notice a difference between the weapon loaders:

WEAPONSECTION = 1

WeaponName = "rep_weap_inf_chaingun"

WeaponAmmo = 4
WEAPONSECTION = 3

WeaponName = "rep_weap_inf_remotedroid"

WeaponAmmo = 4

WeaponChannel = 1
See the difference? That extra line tells the game to put it in as a secondary weapon.
Okay, so now you have given him a chaingun, commando pistol, and probe droid. But you also want to give him a health/ammo dispenser. So, we need to add in a secondary weapon part.

Duplicate the remotedroid section. Now your odf should look like this:
[GameObjectClass]

ClassParent = "rep_inf_default"

[Properties]

WEAPONSECTION = 1

WeaponName = "rep_weap_inf_chaingun"

WeaponAmmo = 0
WEAPONSECTION = 2

WeaponName = "rep_weap_inf_commando_pistol"

WeaponAmmo = 0

WEAPONSECTION = 3

WeaponName = "rep_weap_inf_remotedroid"

WeaponAmmo = 1
WeaponChannel = 1
WEAPONSECTION = 3

WeaponName = "rep_weap_inf_remotedroid"

WeaponAmmo = 2
WeaponChannel = 1

WEAPONSECTION = 4

WeaponName = "rep_weap_award_rifle"

WeaponAmmo = 4

WEAPONSECTION = 5

WeaponName = "rep_weap_award_pistol"

WeaponAmmo = 6

VOUnitType
= 121
Okay, so at the top of each weapon thing, there is this line:

WEAPONSECTION = X

Make sure these go in order. So they should go: 1, 2, 3……. I think you can figure the rest out. And please note – each unit can load a max of 8 weapons.

Okay, so switch the weaponsections so they go in order, because right now we have 2 3’s, and then switch the last 2 so everything goes in order.

So we were adding in an h/a dispenser. This is the codename:

“rep_weap_inf_powerup_dispenser”

So switch the second remotedroid with this, and change the ammo to 4 or 5 or whatever.

Now your odf should look like this:

[GameObjectClass]

ClassParent = "rep_inf_default"

[Properties]

WEAPONSECTION = 1

WeaponName = "rep_weap_inf_chaingun"

WeaponAmmo = 0
WEAPONSECTION = 2

WeaponName = "rep_weap_inf_commando_pistol"

WeaponAmmo = 0

WEAPONSECTION = 3

WeaponName = "rep_weap_inf_remotedroid"

WeaponAmmo = 1
WeaponChannel = 1
WEAPONSECTION = 4
WeaponName = "rep_weap_inf_powerup_dispenser"

WeaponAmmo = 4
WeaponChannel = 1

WEAPONSECTION = 5
WeaponName = "rep_weap_award_rifle"

WeaponAmmo = 4

WEAPONSECTION = 6
WeaponName = "rep_weap_award_pistol"

WeaponAmmo = 6

VOUnitType
= 121
One last thing – take out the part where it loads the award rifle. Since we don’t have a rifle, we don’t need to load the award rifle.

Your finished odf should now look like this:

[GameObjectClass]

ClassParent = "rep_inf_default"

[Properties]

WEAPONSECTION = 1

WeaponName = "rep_weap_inf_chaingun"

WeaponAmmo = 0
WEAPONSECTION = 2

WeaponName = "rep_weap_inf_commando_pistol"

WeaponAmmo = 0

WEAPONSECTION = 3

WeaponName = "rep_weap_inf_remotedroid"

WeaponAmmo = 1
WeaponChannel = 1
WEAPONSECTION = 4
WeaponName = "rep_weap_inf_powerup_dispenser"

WeaponAmmo = 4
WeaponChannel = 1

WEAPONSECTION = 5
WeaponName = "rep_weap_award_pistol"

WeaponAmmo = 6

VOUnitType
= 121
Remember to switch the weaponsections after taking out the award rifle!

Okay, now you can munge. Make sure you select to munge the rep side.

These 2 things I have taught you are the utmost basics for sides modding. Use them well, and your map will be a lot better.

Review:

Custom Sides are made by:

1. Copying a stock side over to your mod folder

2. Changing TGA files with Gimp

3. Changing ODF’s for weapons changes.

4. AND REMEMBER TO KEEP THE BUILD SIDES AND SIDES SYNCED!!!!

Allright, that was custom sides. There is much more to learn, and these are the basics.

In the next section, you will learn how to add locals like tuskens and jawas to your map.

PART 5: Units Stuff
This section will talk about things that deal with units in the game. We will cover:

- Adding Locals to your map

- Adding a Hunt Mode

- How to add more than 32 AI

- How to add more than 6 Units Types

This should be fun.
Part 18. Adding Locals (3rd Team)
Okay, you’ve all seen them. Jawas on Tatooine, Big Ugly Pigs in Jabba’s Palace, Geonosians on Geonosis, Gungans on Naboo, etc. Now, I will teach you how to set up your own locals for your map. So, you want Wampas running around murdering everyone in sight? So it shall be, my apprentice.

For this tutorial, we shall be adding in Gamorrean Guards (The big ugly pigs). Okay, first open your map in Zeroeditor. Hopefully by now you are pretty familiar with how to use the basic features. For this part, you will need to know how to make a command post.

So, make a new command post. Instead of the usual CP1, CP2, CP3, call it “Local_cp1”.

In the right panel, enter this:

[image: image47.png]
Local_capture1

Local_spawn1

Okay, now make the appropriate spawn path and capture region.

NOTE – If you don’t want the command post to be capturable (as in you want your locals to be there until map ends), then just don’t make a capture region.

Our work is done here.

Go to your lua (data_MAP/common/scripts/MAP). Find this part:

 ReadDataFile("SIDE\\rep.lvl",

 "rep_inf_ep3_rifleman",

 "rep_inf_ep3_rocketeer",

 "rep_inf_ep3_engineer",

 "rep_inf_ep3_sniper",

 "rep_inf_ep3_officer",

 "rep_inf_ep3_jettrooper",

 "rep_hover_fightertank",

 "rep_hero_anakin",

 "rep_hover_barcspeeder")

 ReadDataFile("SIDE\\cis.lvl",

 "cis_inf_rifleman",

 "cis_inf_rocketeer",

 "cis_inf_engineer",

 "cis_inf_sniper",

 "cis_inf_officer",

 "cis_inf_droideka",

 "cis_hero_darthmaul",

 "cis_hover_aat")
Remember what this is for? Loading the units. Remember that.

We are adding in Gamorreans, so we need to load them.

Go to assets/sides. Find the side called ‘gam’. Open the req file.

This is what is inside:

ucft

{

REQN

{

"lvl"

"gam_inf_gamorreanguard"

}

}

A rather small req, is it not? So, we now know the codename for our pig: ‘gam_inf_gamorreanguard’.

Now, back to the lua. Make copy of the cis side, so it looks like this:

 ReadDataFile("SIDE\\rep.lvl",

 "rep_inf_ep3_rifleman",

 "rep_inf_ep3_rocketeer",

 "rep_inf_ep3_engineer",

 "rep_inf_ep3_sniper",

 "rep_inf_ep3_officer",

 "rep_inf_ep3_jettrooper",

 "rep_hover_fightertank",

 "rep_hero_anakin",

 "rep_hover_barcspeeder")

 ReadDataFile("SIDE\\cis.lvl",

 "cis_inf_rifleman",

 "cis_inf_rocketeer",

 "cis_inf_engineer",

 "cis_inf_sniper",

 "cis_inf_officer",

 "cis_inf_droideka",

 "cis_hero_darthmaul",

 "cis_hover_aat")
 ReadDataFile("SIDE\\cis.lvl",

 "cis_inf_rifleman",

 "cis_inf_rocketeer",

 "cis_inf_engineer",

 "cis_inf_sniper",

 "cis_inf_officer",

 "cis_inf_droideka",

 "cis_hero_darthmaul",

 "cis_hover_aat")
Now, change the second cis part to this:

 ReadDataFile("SIDE\\gam.lvl",

 "gam_inf_gamorreanguard")
See what we changed? Now the pigs are loaded.

Now we need to add in their command post. Go to the top of your lua, to this part:

 --This defines the CPs. These need to happen first

 cp1 = CommandPost:New{name = "cp1"}

 cp2 = CommandPost:New{name = "cp2"}

 cp3 = CommandPost:New{name = "cp3"}

 cp4 = CommandPost:New{name = "cp4"}

 --This sets up the actual objective. This needs to happen after cp's are defined

 conquest = ObjectiveConquest:New{teamATT = ATT, teamDEF = DEF,

 textATT = "game.modes.con",

 textDEF = "game.modes.con2",

 multiplayerRules = true}

 --This adds the CPs to the objective. This needs to happen after the objective is set up

 conquest:AddCommandPost(cp1)

 conquest:AddCommandPost(cp2)

 conquest:AddCommandPost(cp3)

 conquest:AddCommandPost(cp4)

Remember how to add command posts?
There are 2 parts to deal with:

 cp1 = CommandPost:New{name = "cp1"}

 cp2 = CommandPost:New{name = "cp2"}

 cp3 = CommandPost:New{name = "cp3"}

 cp4 = CommandPost:New{name = "cp4"}

and

 conquest:AddCommandPost(cp1)

 conquest:AddCommandPost(cp2)

 conquest:AddCommandPost(cp3)

 conquest:AddCommandPost(cp4)

The first adds the command post to the game. The second adds it to the objective. All command posts listed in the second part need to be captured in order for the victory timer to start counting down.

So, add your new command post to them. Remember what it’s called? “Local_cp1”.

So add it to both sections. But note, in the second one, you add the number. So not “local_cp1”, but “cp5”, because it is the 5th command post. The number is determined by the first command post section. See? This is it:

 cp5 = CommandPost:New{name = "local_cp1"}
It is telling BF2: “Hey, this new command post is command post number 5, and in zeroeditor, it’s called ‘local_cp1’.”

So, now that part of the lua should look like this:

 --This defines the CPs. These need to happen first

 cp1 = CommandPost:New{name = "cp1"}

 cp2 = CommandPost:New{name = "cp2"}

 cp3 = CommandPost:New{name = "cp3"}

 cp4 = CommandPost:New{name = "cp4"}
 cp5 = CommandPost:New{name = "local_cp1"}

 --This sets up the actual objective. This needs to happen after cp's are defined

 conquest = ObjectiveConquest:New{teamATT = ATT, teamDEF = DEF,

 textATT = "game.modes.con",

 textDEF = "game.modes.con2",

 multiplayerRules = true}

 --This adds the CPs to the objective. This needs to happen after the objective is set up

 conquest:AddCommandPost(cp1)

 conquest:AddCommandPost(cp2)

 conquest:AddCommandPost(cp3)

 conquest:AddCommandPost(cp4)

 conquest:AddCommandPost(cp5)
NOTE – If you want your command post to be uncapturable, just remove this line:

conquest:AddCommandPost(cp5)
Okay, so we are loading them ingame, and we have their command post set up. Now, we just have to make a new team for them.
Go to this part in your lua:

SetupTeams{

rep = {

team = REP,

units = 20,

reinforcements = 150,

soldier = { "rep_inf_ep3_rifleman",9, 25},

assault = { "rep_inf_ep3_rocketeer",1, 4},

engineer = { "rep_inf_ep3_engineer",1, 4},

sniper = { "rep_inf_ep3_sniper",1, 4},

officer = {"rep_inf_ep3_officer",1, 4},

special = { "rep_inf_ep3_jettrooper",1, 4},

},

cis = {

team = CIS,

units = 20,

reinforcements = 150,

soldier = { "cis_inf_rifleman",9, 25},

assault = { "cis_inf_rocketeer",1, 4},

engineer = { "cis_inf_engineer",1, 4},

sniper = { "cis_inf_sniper",1, 4},

officer = {"cis_inf_officer",1, 4},

special = { "cis_inf_droideka",1, 4},

}

}

Remember, this part sets up the 2 default teams.
Now, under it, but before the part where we set up the heroes, we add our new part. I’ll take you through it.

 SetTeamName (3, "pigs")
This sets the team’s name. Make this whatever you want. I’ve got it as pigs.
 AddUnitClass (3, "gam_inf_gamorreanguard", 10,15)

This part tells the new team which units to put in it. In this case, only our Gamorrean guard.
 SetUnitCount (3, 15)
This sets how many units can be on the field at once. The first number is the minimum allowed, and the second is the maximum.
 AddAIGoal(3, "Deathmatch", 100)

 SetTeamAsEnemy(ATT,3)

 SetTeamAsEnemy(3,ATT)

 SetTeamAsEnemy(DEF,3)

 SetTeamAsEnemy(3,DEF)
This part is setting up who the team is friendly to. Here, I have it set to everyone’s enemy.

The first line defines if the rep/imp side like them.

The second line defines if this team like the rep/imp team.

The third line defines if the cis/all team like them.

The fourth line defines if this team likes the cis/all team.

You can use “enemy” or “friend”. Use whatever combination you want.

Okay, so now this part of our lua should look like this:

SetupTeams{

rep = {

team = REP,

units = 20,

reinforcements = 150,

soldier = { "rep_inf_ep3_rifleman",9, 25},

assault = { "rep_inf_ep3_rocketeer",1, 4},

engineer = { "rep_inf_ep3_engineer",1, 4},

sniper = { "rep_inf_ep3_sniper",1, 4},

officer = {"rep_inf_ep3_officer",1, 4},

special = { "rep_inf_ep3_jettrooper",1, 4},

},

cis = {

team = CIS,

units = 20,

reinforcements = 150,

soldier = { "cis_inf_rifleman",9, 25},

assault = { "cis_inf_rocketeer",1, 4},

engineer = { "cis_inf_engineer",1, 4},

sniper = { "cis_inf_sniper",1, 4},

officer = {"cis_inf_officer",1, 4},

special = { "cis_inf_droideka",1, 4},

}

}

 SetTeamName (3, "pigs")

 AddUnitClass (3, "gam_inf_gamorreanguard", 10,15)

 SetUnitCount (3, 15)

 AddAIGoal(3, "Deathmatch", 100)

 SetTeamAsEnemy(ATT,3)

 SetTeamAsEnemy(3,ATT)

 SetTeamAsEnemy(DEF,3)

 SetTeamAsEnemy(3,DEF)
There! Our new team is all set up!

Munge, and watch the pigs slaughter everyone!

And if you want this in the GCW era, you will have to make all the same changes to that lua.

Now, you know how to add locals. You are becoming quite skilled at modding, my young apprentice.
Off Topic Here is a quote from “Star Wars – The Mod Strikes Back”:

Darth Modder – “What is thy bidding, my master?”

Fierfek – “To make great mods, lord modder.”

Darth Modder – “It will be done, my master.”

That was weird.

Okay, in the next part, you will learn how to add a hunt mode to your map.

Part 19. Adding Hunt

Okay, so you’ve noticed that when you make a map with the tools, it doesn’t offer to make a hunt mode. So, we will do it manually.

First, we need to get a hunt script, because it is pretty different than our ones.
Go to assets/scripts/hot. Get the file “hot1g_hunt”, and copy it over to where the rest of our scripts are.

Open it up, and find this line:

ReadDataFile("HOT\\hot1.lvl", "hoth_hunt")
It is asking for the hoth file, but we don’t want that. We want it to read our file.

So, we’ll change it. Remember how to tell it to read from our mod folder? Adding a ‘dc:’. So, change the above line to this:

ReadDataFile("dc:MAP\\map.lvl", "map_hunt")
Now it is asking for our mission file. But wait, we don’t have one yet! Those are created automatically for modes like conquest and ctf, but not for hunt!

So, go to data_MAP/common/mission.

Find the file called “hot1g_hunt”. Make a copy of it. Call the new one “map*_Hunt (The * stands for whatever era you are making this for – c or g).

Open your new one up. It has this inside:

ucft

{

REQN

{

"script"

"hot1g_hunt"

}

}

Change the “hot1g_hunt” to “map*_hunt” (again, * stands for the era).
Now, go to the folder data_MAP/common. Open the file “mission.req”.

Go find this part:

 "MAPg_con"

 "MAPc_con"
This is telling the game which modes to load. We need to add our one.

Now it should look like this:

 "MAPg_con"

 "MAPc_con"

 "MAP*_hunt"

I hope I don’t have to tell you what the * means again.
Okay, now go to data_MAP/addme. Open “addme.lua”.

Find this part:

sp_missionselect_listbox_contents[sp_n+1] = { isModLevel = 1, mapluafile = "MAP%s_%s", era_g = 1, era_c = 1, mode_con_g = 1, mode_con_c = 1,}
In the file, that is one big line.

Okay, so this is telling the game which missions to load. See the part highlighted? Right after it, add this:

mode_hunt_* = 1,
So now, it should look like this:

sp_missionselect_listbox_contents[sp_n+1] = { isModLevel = 1, mapluafile = "BUT%s_%s", era_g = 1, era_c = 1, mode_hunt_* = 1, mode_con_g = 1, mode_con_c = 1,}

I hope I don’t have to tell you what the * means again.

Okay, now scroll down the addme file. Find this part:

AddDownloadableContent("MAP","MAPg_con",4)

AddDownloadableContent("MAP","MAPc_con",4)

This is telling the game which modes to add in. We need to add our one.

Now, it looks like this:

AddDownloadableContent("MAP","MAPg_con",4)

AddDownloadableContent("MAP","MAPc_con",4)
AddDownloadableContent("MAP","MAP*_hunt",4)
DO I HAVE TO TELL YOU WHAT THE * MEANS AGAIN?!?!?!

We are done with scripts for now.

Go open your map in Zeroeditor.

Click on the change layer button:

[image: image48.png]
Now you’ve got this screen:

[image: image49.png]
Click “new”.

Now you have a new layer called “layer000”. Right click on it, and hit “rename layer”. Rename it to “hunt”.

Now the screen should look like this:

[image: image50.png]
Now we have a hunt layer!

Exit the layers palette. Right next to it, you see the “configure” button:

[image: image51.png]
Click it. Now you have this screen:

[image: image52.png]
You see there is a “hunt” on the very left. Click on it, and then click “remove”.

Now, in the second column, at the top, type in “hunt”, and click add.

In the last column, click “add”. A new screen comes up:

[image: image53.png]
Click hunt, the click ok.

Now the first screen should look like this:

[image: image54.png]
Hit “update world REQ and mode MRQs”. Go to data_MAP/worlds/MAP/world1. Click the file showed. Then exit the first screen.

We are done! But wait – we need to add some command posts!

Add your command posts.

Now, the hunt mode is done! It will have rebels vs. wampas. I won’t tell you how to change that right now.

Next, we will learn how to make huge battles!

Part 20. Ubermode

Okay, so you want to have an enormous battle in your map, like in XL. Luckily, that is easily accomplished!

Go to your lua. Find this part:

 conquest:Start()

 EnableSPHeroRules()

 End
Right after “conquest:Start()”, add in “SetUberMode(1);”. So now that section should look like this:

 conquest:Start()

 SetUberMode(1);
 EnableSPHeroRules()

 End
Then, go down to the team setup section:

SetupTeams{

rep = {

team = REP,

units = 20,

reinforcements = 150,

soldier = { "rep_inf_ep3_rifleman",9, 25},

assault = { "rep_inf_ep3_rocketeer",1, 4},

engineer = { "rep_inf_ep3_engineer",1, 4},

sniper = { "rep_inf_ep3_sniper",1, 4},

officer = {"rep_inf_ep3_officer",1, 4},

special = { "rep_inf_ep3_jettrooper",1, 4},

},

cis = {

team = CIS,

units = 20,

reinforcements = 150,

soldier = { "cis_inf_rifleman",9, 25},

assault = { "cis_inf_rocketeer",1, 4},

engineer = { "cis_inf_engineer",1, 4},

sniper = { "cis_inf_sniper",1, 4},

officer = {"cis_inf_officer",1, 4},

special = { "cis_inf_droideka",1, 4},

}

}

See after each unit codename, there are 2 numbers? Those numbers set the minimum and maximum allowed units of that class on the field at once.

So, let’s experiment. Change the soldier’s minimum to 30, and maximum to 100, so it would look like this:

soldier = { "rep_inf_ep3_rifleman",30, 100},
Do that to both soldier classes. Change all the rest of the classes to minimum 3, maximum 10. So now, this section looks like this:

SetupTeams{

rep = {

team = REP,

units = 20,

reinforcements = 150,

soldier = { "rep_inf_ep3_rifleman",30, 100},

assault = { "rep_inf_ep3_rocketeer",3, 10},

engineer = { "rep_inf_ep3_engineer",3, 10},

sniper = { "rep_inf_ep3_sniper",3, 10},

officer = {"rep_inf_ep3_officer",3, 10},

special = { "rep_inf_ep3_jettrooper",3, 10},

},

cis = {

team = CIS,

units = 20,

reinforcements = 150,

soldier = { "cis_inf_rifleman",30, 100},

assault = { "cis_inf_rocketeer",3, 10},

engineer = { "cis_inf_engineer",3, 10},

sniper = { "cis_inf_sniper",3, 10},

officer = {"cis_inf_officer",3, 10},

special = { "cis_inf_droideka",3, 10},

}

}

One last thing – see this part:

team = CIS,

units = 20,

reinforcements = 150,
The middle line sets the max units on the field at once. Set that to 170 for both sides.

You are done! Munge and watch the battle unfold!
In the next and final section for this update, we will talk about adding more unit classes.

Part 21. Having more than 6 Classes

So you want more unit classes, eh? Okay, so now you’ll learn how.

There are 2 ways to do this: Using the Setup Teams function, and using te AddUnitClass function. I never got the addunitclass thing to work, so we’ll go with the other one. I’ll tell you how to add up to 8 units.
So, first go to data_MAP/common/scripts. There are lots of different scripts in here.

Go find the script titled “setup_teams”. Open it.

Go find this part in the script:

local typeList = { "soldier", "pilot", "assault", "sniper", "marine", "engineer", "officer", "special" }

That lists the kind of units there are. There are 2 ones not being used here – pilot and marine.
Okay, let’s rename those. Rename pilot to “commander” and rename marine to “stealth”. Now, for the moment, these units will be the exact same as 2 other units in the game, but different skins. That’s okay for now. To change that, you would change the name of the daddy (remember him?), then go make your own daddy.

Now, go to your lua, and down to the loading part:
ReadDataFile("SIDE\\rep.lvl",

 "rep_inf_ep3_rifleman",

 "rep_inf_ep3_rocketeer",

 "rep_inf_ep3_engineer",

 "rep_inf_ep3_sniper",

 "rep_inf_ep3_officer",

 "rep_inf_ep3_jettrooper",

 "rep_hover_fightertank",

 "rep_hero_anakin",

 "rep_hover_barcspeeder")
We are going to add in the arc trooper (rep_inf_ep2_rocketeer) and the phase 1 sniper (rep_inf_ep3_sniper). So, add them to the reading list:

ReadDataFile("SIDE\\rep.lvl",

 "rep_inf_ep3_rifleman",

 "rep_inf_ep3_rocketeer",

 "rep_inf_ep3_engineer",

 "rep_inf_ep3_sniper",

 "rep_inf_ep3_officer",

 "rep_inf_ep3_jettrooper",

 "rep_hover_fightertank",

 "rep_hero_anakin",

 "rep_hover_barcspeeder",

 “rep_inf_ep2_rocketeer”,

 “rep_inf_ep2_sniper”)

Now down to this part:

SetupTeams{

rep = {

team = REP,

units = 20,

reinforcements = 150,

soldier = { "rep_inf_ep3_rifleman",9, 25},

assault = { "rep_inf_ep3_rocketeer",1, 4},

engineer = { "rep_inf_ep3_engineer",1, 4},

sniper = { "rep_inf_ep3_sniper",1, 4},

officer = {"rep_inf_ep3_officer",1, 4},

special = { "rep_inf_ep3_jettrooper",1, 4},

},

cis = {

team = CIS,

units = 20,

reinforcements = 150,

soldier = { "cis_inf_rifleman",9, 25},

assault = { "cis_inf_rocketeer",1, 4},

engineer = { "cis_inf_engineer",1, 4},

sniper = { "cis_inf_sniper",1, 4},

officer = {"cis_inf_officer",1, 4},

special = { "cis_inf_droideka",1, 4},
I hope you are getting used to it down here!

So, let’s add a couple more classes.

Add this onto the Republic Setup Teams:

commander = {"rep_inf_ep2_rocketeer",1, 4},

stealth = { "rep_inf_ep2_sniper",1, 4},
That will add those 2 classes into the game!

SetupTeams{

rep = {

team = REP,

units = 20,

reinforcements = 150,

soldier = { "rep_inf_ep3_rifleman",9, 25},

assault = { "rep_inf_ep3_rocketeer",1, 4},

engineer = { "rep_inf_ep3_engineer",1, 4},

sniper = { "rep_inf_ep3_sniper",1, 4},

officer = {"rep_inf_ep3_officer",1, 4},

special = { "rep_inf_ep3_jettrooper",1, 4},

commander = {"rep_inf_ep2_rocketeer",1, 4},

stealth = { "rep_inf_ep2_sniper",1, 4},
The only thing is, we can’t do that with the CIS side, because they don’t have any more units. You could make custom units, then add them in.

Well, that is all for this update! See you all next time!
Credits:

Lucasarts for Making BF2 and The Modding Tools

Me for writing the guide

All the Great Modders of Filefront and Gametoast from whom I learned to mod

AQT For the edited clone skin

ACE Mastermind for reading over my guide and pointing out mistakes

Thanks! Make sure to give credit to me when you publish your mod! Seriously, if you read this, and that’s how you learned to mod, you should thank me.

Vore Ent’ye, bur’cya!

- Fierfek

A

B

C

D

A – 3 letter world name. For our test map, let’s do MAP.

B – Your World’s Name. Call your map whatever you want. Just don’t call it something that doesn’t relate to Star Wars. A lot of maps are called something like “The Fun Map”. Ugh. Call it something cool, like “Taris: Ruins”.

C – Description that will show up in BF2. Write whatever you want here.

D – These are the game modes for your map. You can choose from the 4 listed, or do a space map. For our test map, let’s just check Conquest.

CLICK CREATE WORLD.

Hit Load.

PAGE
- 62 -
Star Wars Battlefront II

By Fierfek

Modding Tutorial

