

1

INSIDE FRONT COVER
PAGE INTENTIONALLY LEFT BLANK

2

Table of Contents
 INTRODUCTION.. 5
 WHO AM I?.. 5
 MODDING TAKE COMMAND.. 7

 Conventions Used in this Guide... 8
 General Notes on File Editing... 8
 CSV Files: Columns, Rows, Cells, Headers, and Values... 9

 THE ORDER OF THINGS.. 10
 Folder Contents.. 10
 Custom Scenario Folder Content... 12
 TC**.ini File.. 13
 Level.ini File... 14
 The EndScenario Command and EndScreen Definitions... 15
 The Scenario Carryover Capability... 16

 DESIGNING AN OPEN PLAY ORDER OF BATTLE... 18
 Types of Open Play OOBs... 18
 The Units.csv.. 18

 DESIGNING A CUSTOM SCENARIO.. 29
 The Events.csv... 39
 The Objectives.csv... 42
 Intro.txt... 44
 Screen.txt... 44
 The Names.csv.. 45

 MOD/ADD A UNIFORM... 46
 The Sprites.csv... 49
 The Textures.csv.. 51
 The Unitsprite.csv... 51
 The Unitcommon.csv.. 52

 MOD/ADD A FLAG.. 54
 MOD/ADD A WEAPON.. 54

 The Weapons.csv... 54
 The Artyammo.csv... 56
 The Tables.csv: Artillery Section.. 56

 MOD THE GAME INTERFACE.. 58
 The Toolbar.csv.. 58
 The Tooltext.csv... 60

 MOD A MAP... 61
 The Map Layout... 61
 The Map_Name.csv... 61

 Terrain Table Brush... 62
 Terrain Table Sounds.. 62

3

 Terrain Table Objectives.. 63
 The Gamesounds.csv.. 63

 MODDING THE TAKE COMMAND COMBAT MODEL... 64
 The Levels.csv... 64

 Table: Morale... 67
 Table: Fatigue. ... 67
 Table: Fatigue Run. ... 68
 Table: Unit Morale Bonus. ... 68
 Table: Grades. ... 68
 Table: Retreat. ... 69
 Table: Fallback. ... 69
 Table: Elevation... 69
 Table: Area Mod.. 70
 Table: Capture. .. 70
 Table: Artillery Accuracy. ... 70

 The Formations.csv.. 70
 MISCELLANEOUS... 74

 The Mainscreens.csv... 74
 The Gamescreens.csv... 75
 The Mainsounds.csv.. 76
 The Gamesounds.csv.. 76
 The Effects.csv... 77

 USING THE WAREDIT UTILITY.. 79
 USING THE WARPACK UTILITY.. 81
 ON-LINE HELP.. 82
 A NOTE FROM THE EDITOR.. 82
 APPENDIX A: VARIABLES REFERENCE.. 83
 APPENDIX B: EVENT COMMANDS REFERENCE.. 87
 APPENDIX C: EVENTS.CSV EXAMPLES.. 90
 INDEX... 97

4

Introduction

The Take Command game series was created using MadMinute Games’ War3D game engine. The
War3D game engine was specifically designed to facilitate modding and scenario creation by the game
owner. Included on the game CD-ROM is the Take Command Software Development Kit (SDK) folder.
This folder contains all of our source csv (comma separated value) and txt (text) files that were used to
build the scenario files for your particular Take Command game, and the WarEdit and WarPack
Utilities. With this SDK, you can modify the values in existing scenarios (troop strengths, morale, weapon
ranges, etc). You can build your own historical or fictional Orders of Battle for Open Play. You can build
historical and fictional scenarios from scratch. With additional third-party software, you can add or change
all the artwork. You can modify the game interface or create a new one. In other words, you can do
basically anything with the War3D game engine except create new game maps (though you can modify
existing ones). A few variables and functions (very few) are still hard coded in the game. In future editions
of the War3D game engine, more and more access to what “goes on under the hood” will be provided to
the modder.

All of the technical information needed to mod the files used by the War3D game engine can be found in
this guide. Many of the areas covered may be hard to understand, so if you need assistance after reading
the information presented here, please visit The Modder’s Corner at the MadMinute Games forum and
post your questions there. You’ll find many experienced modders on the forum who have already “seen
the elephant”.

Again, many of our design decisions for the War3D game engine were made to increase the flexibility of
the player to do “his own thing”. Though powerful—gaining an understanding of how the engine works
can be challenging. However, the more you work with it, the easier it becomes to realize your game
design goals. Start small and build on what you learn. This Developer’s Guide is the first step towards
designing your own orders of battle, scenarios, and mods.

Now—ask yourself the question…

Who am I?

Even though the intended audience of this guide is modders and scenario designers, there is something in
it for everyone.

If you are a serious Take Command gamer but aren’t interested in modding, check out the Units.csv
section of this guide. You will find a few pieces of information there that might just enhance your game
play.

5

If you are interested in expanding your game play options quickly and without a lot of fuss, then see the
section on Designing an Open Play Order of Battle. This is the quickest way—for the least amount of
effort—to expand the re-playability of any game in the Take Command series.

If you are interested in putting a little more time and effort into the craft of design—but want to keep the
computer ju-ju down to a minimum—see the section on Designing a Custom Scenario.

If you are computer savvy, have an imagination, and want to push to the very limit your gaming and/or
historical experiences with the Age of Linear Tactics, then Take Command of this Developer’s Guide and
start hitting the keyboard and history books! For you there is no easy button—the War3D engine is a set
of power tools that will allow you to create—YOUR WAR, YOUR WAY! (“Har! Har! Har!…ahhhuuoo?” –
Tim Allen, Home Improvements)

6

Modding Take Command

“Nothing is particularly hard if you divide it into small jobs.”—Henry Ford

The SDK gives you the power to create an entirely new game. ALL of the artwork can be replaced—even
the game screens and toolbars. Basically, any period in history where armies employed a regimental-
based, linear combat system could be replicated using the War3D game engine. Since you can specify
the size of the regiments used in the game, you could even create a powerful, single-man infantry unit
(though it would still have a flag bearer). You could create a fantasy or sci-fi game—the possibilities are
endless. Of course anything you create with the War3D engine must be given away for free. You cannot
sell anything that you create using it, but that's what great mod communities are all about—modding and
sharing more content for your favorite games.

There are some limitations of course. If we don't support the function that you need, you can't add it. For
example, some people have been talking about a Napoleonic Mod. We can do almost anything with the
engine, but one major item that we can't do is form a square. That's because within our existing
formations, all units and sprites must face in the same direction. You could use our modding techniques to
create a square formation, but once melee combat started the square would fall apart, and still—everyone
would be facing in the same direction.

Now, open the SDK folder to see where all of the csv files, text files, and War3D Utilities are located. Our
game directory structure was designed to support lots of experimenting with these files using the WarEdit
utility—without worrying about messing up your main game files. So go ahead and give modding a shot.
Read the following information and instructions and see what you can come up with. Start small to get a
handle on things—and then build from there.

When you are finished building your Custom Scenarios, use the WarPack utility to package it all up.
This utility will zip up all the files in your scenario folder into one compressed file—an .mmg file.
This utility allows you to distribute your scenarios easily by email or from a webpage for others to
play.

The WarEdit and WarPack utilities are found on your Take Command game CD-ROM in the SDK
Folder.

So have fun—and show the Take Command gaming community what you can do. Good Luck!

7

Conventions Used in this Guide

The term TC**.ini is used throughout this guide to represent the main .ini file for any game in the Take
Command game series. For example, the main .ini file in Take Command: 2nd Manassas is called the
TC2M.ini file. As more games are published by MMG, the last two letters of each subsequent release will
change…and keeping this guide up to date will be a little easier using this naming convention.

To help you quickly identify key terms within the document, all csv and text file names are in BOLD text;
Commands, Variables, and Attributes are in BOLD ITALICS text.

If you see the less than, greater than symbols enclosing some text that needs to be typed, exclude the less
than, greater than symbols. For example, if you see this:

 <Paradox_Off>

…then type it in this way:

Paradox_Off

DESIGN TIPS: These boxes contain a description of a way to perform certain tasks. The
methods they describe are optional.

NOTES: These boxes emphasize important aspects of the War3D engine. Pay close attention
to what is found in these boxes.

General Notes on File Editing

What you need. The tools needed to edit the csv files in the Take Command game series are minimal.
All of the files used to define a scenario are either plain text files or Comma Separated Value (csv) files.
Both of these types of files can be edited with Microsoft’s Notepad program. However, we highly suggest
using a spreadsheet program (like Microsoft Excel) or the WarEdit utility to edit the csv files. These
programs will import and export the Take Command csv files and provide a user-friendly environment in
which to work on them.

DESIGN TIP: Commenting your .csv files. If you want to put a comment in one of our csv files,
you must put these in the second column (or greater) so the game program doesn’t read that
row as data. Putting something in the first column of a row makes the program think that there
is data in that row…and strange things could happen as a result.

If you want to mod or build new graphics, then you will need an image editing program that is capable of
saving your artwork in either .tga file or .dds file formats. PaintShop, PhotoShop or GIMP are all logical
choices; but if you are really serious about this aspect of modding—get PhotoShop and the .dds plug-in.

If you want to create new uniform, wagons, or weapon sprites from scratch, then you will need a 3D
modeling and animation program such as 3DStudio Max or LightWave 3D. This is probably the most
difficult task in modding the Take Command game series—but it is doable.

8

CSV Files: Columns, Rows, Cells, Headers, and Values

When editing .csv files it is important to understand the various terms related to them. Each Take
Command .csv file has its own internal structure; but common to all is the idea of headers, columns,
rows, cells, and values.

Headers. In most of our csv files (unless otherwise specified) the first row contains what are called, “the
headers ”. These are short word descriptions of the data contained in any particular column. The game
program does not read this row so you can change these headers as you see fit. If another name
description of a data column makes more sense to you, then change it. Also if the first cell of a row is
blank, then that row will be skipped (i.e., it will not be read by the game program). Unless otherwise
specified in a csv file definition, you can add all the comments you want by leaving the first cell on the row
blank.

Example of Terms. Let’s use the units.csv file to see how these various terms all work together.
The units.csv file is a list of all the Commanders and Units for the Union and the Confederacy that
will be available in an Open Play OOB or Custom Scenario. It also lists the different attributes of
each of these Commanders and Units. Each attribute will have its own column. The attribute names
are the column headers. All the actual values of an attribute (header) for one Commander or Unit
will be listed on one row in the cells under the appropriate column header.

To illustrate, in the units.csv file extract above we see seven columns and eight rows. In Row 1, we
see seven column headers (ARMY, CORPS, DIV, BRIG, REGT, ID NAME, and CLASS). In Rows 2
thru 8, we see the actual values for the attributes of two Commanders and five Units. Row 2 lists a
portion of the data relevant to Brigadier General Rufus King; reading the data cells from left to right,
we see that he is in Army=1 (Union), Corps=1, Division=1. Because King is a division commander,
the Brigade and Regiment columns=0. U_RKing is the scenario unique ID Name that will be used by
the engine to perform various functions, and the CLASS Div_BrigGen identifies the
unitcommon.csv CLASS that will be used by Brig-Gen King’s sprite during game play.

NOTE: Corps=1 and Division=1 does not mean this is the 1st Division/I Corps; it means
that is the first corps listed under the Union Army and the first division listed under that first
corps. See the Units.csv section of this guide for more details.

9

The Order of Things

This section explains how the War3D program chooses files from the game directory structure. Let’s
take a look at it. If you loaded your Take Command game using the default loading options then
you will find the main game directory on your C:\ hard drive. Using Explore, navigate to:

C:\Program Files\Paradox Interactive\Take Command - 2nd Manassas

Now left click on this folder and it should display the following folders:

Data Files
Graphics

Effects
Flags
Misc
Screens
Terrain
ToolBar
Units

Maps
Movies
Open Play
packages
Saved Games
Scenarios
screenshots
Sounds

Folder Contents

Data Files Folder . This folder is empty when you first load your game. Any .csv files that you modify
and place in this folder will be used by the game engine for all Open Play and Custom Scenarios. If the
Date Files folder is missing from your main game directory—then you need to add it.

Graphics Folder . The graphics folder contains seven sub-folders (labeled: Effects, Flags, Misc,
Screens, Terrain, ToolBar, and Units). All the graphics files used in the used in the game are located in
these folders.

Effects Folder . This folder contains the graphics files that are used to represent explosions and smoke
effects during game play.

Flags Folder . This folder contains the hi-res and lo-res graphics files that represent the flags “carried” by
Commanders and Units during game play.

Misc Folder . This folder contains the graphics files that represent game objective locations and the
Commander and Unit wheeling indicator.

Screens Folder . This folder contains the graphics files for the main game screens.
10

Terrain Folder . This folder contains the graphics files that represent the various forms of vegetation and
certain “cultural” entities (trees, crops, grass, graveyard stones, etc.).

ToolBar Folder . This folder contains all the graphics files that are used on the toolbar graphic. It also
contains the Compass graphic used for navigation on the main game screen.

Units Folder. This folder contains all the hi-res and lo-res 2D graphics files that represent the
Commanders and Units in the game.

Maps Folder. This folder contains all the map graphics files and map .csv files.

Movies Folder. This is where the movie files that shipped with the game are stored.

PLAY TIP. Tired of watching the start-up videos play? You can turn these video files “off”, by
either deleting them from this folder or re-naming them. For example, right click on the Paradox
video file in the Movies folder. Select <Rename> from the pop-up window that appears and
rename the file <Paradox_OFF>. To “turn it back on”, repeat this process but rename the file
<Paradox>. Voila! No video!

Open Play Folder . The folder contains the Open Play Orders of Battle that came with TAKE COMMAND.
This is also the folder you put any OOBs that you or other modders have created for use in Open Play.

Packages Folder . Don’t mess with anything in here. “These aren’t the Droids you’re looking for…Move
along…”

Saved Games Folder . This folder is where all saved game files are stored.

Scenarios Folder . At the lowest level of the game directory structure is the Scenarios folder. This folder
contains all the playable scenarios in the game (with the exception of Open Play scenarios). These
scenarios can be either scenario .mmg files or “Custom” Scenario folders. There is no limit to the number
of .mmg files or Custom Scenario folders that can be placed here.

IMPORTANT NOTE: Scenarios are loaded by the game program from either an .mmg file OR
from a Custom Scenario folder--but never both. Any files found in an .mmg file or Custom
Scenario Folder will be loaded. These files will take precedence over any other files
located within the main game program directory.

NOTE: Even if an .mmg file and a Custom Scenario folder have the same exact name, they are
considered two separate entities as far as the game program is concerned; they will BOTH
show up in the Custom Scenarios game menu. The only .mmg files that will not show up are
the ones displayed and accessed from the TAKE COMMAND Battle Screens. These are hard
coded and will not display in the Custom Scenarios game menu.

Screenshots Folder . This folder is where screenshots are stored. When you hit the F4 key during game
play, an image is taken of the game screen and is saved in this folder.

Sounds Folder . This folder is where all sound files are stored.

11

Main Game Folders . At the next level up in the game directory structure are the main game folders.

IMPORTANT NOTE: If a required game file is not found in a scenario .mmg or Custom
Scenario folder, then the game program will look for it in one of the main game folders. If the
required game file is not found in any of the main game folders then the game program will look
for it in the TC**.mmg file.

For example: Let's say the game program is loading a scenario folder and the 2ndM_29th.csv. The
2ndM_29th.csv is normally located in the Maps folder of the main game directory. First the game program
looks to see if you have a Maps folder in your scenario folder. If it doesn’t find one, then it looks in the
main directory Maps folder. If it doesn’t find one there, it looks next in the TC**.mmg.

Custom Scenario Folder Content

The following folders can exist within your Custom Scenario folders: Data Files, Graphics, Maps,
Sounds, and Text. The files in these will override the files in both the main game folders and the
TC**.mmg file: One minor exception to this rule is that the screen.txt file will add to and replace the
strings in the main screen.txt file. So if there is a default string in the main file and you don't want to add
it, if you do not place that string in the scenario screen.txt file, it will be retrieved from the main screen.txt
file. All of the other files will completely replace their main directory equivalents.

This directory design allows you to experiment inside a scenario folder without ever having to worry about
messing up your main game directory. Basically any file that you want replaced in your scenario can be
placed in your scenario folder directory using the matching structure of the main directory—the file will be
picked up when that scenario is selected for play. A basic Custom Scenario folder’s directory (with basic
required files shown) looks like this:

\Scenarios
Custom Scenario Name

Data Files
events.csv
objectives.csv
units.csv

Text
intro.txt
screen.txt

level.ini

A fully developed Custom Scenario folder’s directory (without files shown) could look like this:

\Scenarios
Custom Scenario Name

Data Files
Graphics

Effects
Flags
Terrain
Toolbar
Units

12

Maps
Sounds
Text

NOTE: While modding the War3D engine, you will probably encounter many crashes. This is
because the modding abilities are so powerful—and can get quite complex with creative
modders. We have added numerous checks in the War3D engine to help diagnose problems
with user developed mods. However, we can’t anticipate every potential mistake a modder
might make. The crash is your friend; it tells you that you have done something incorrectly. So
make small changes and check your work often until you get a feel for how everything ties
together.

TC**.ini File

There is just one TC**.ini file for the entire game. This file might be displayed on your It can be found
in the main game directory with the executable. This file is used to set many global variables in the
game and is also used for storage by the dynamic variable system.

File entry Explanation
[Initialization] Section header for initial part of the file
Full Screen=0 TAKE COMMAND actually will work in windowed mode, it will show up in the upper left

corner of the screen and is not movable. This is a great way to work during development of
scenarios. Set this to 1 to activate windowed mode; 0 to deactivate windowed mode.

DbgLvl=0 By turning on the debug level you turn on some of the information that we use to develop the
game. The first number is the number of frames per second, followed by the number of AI
calls in the last frames with the maximum reached in parentheses, next is the location of the
camera and then how many sprites were drawn the last frame with the total that could have
been drawn in parentheses. You will also see the coordinates of the currently selected unit.
Set this to 1 to activate; 0 to deactivate.

LoseFocus=1 This determines if the game pauses when it loses focus, really only useful if you're running in
windowed mode. Set this to 1 to activate; 0 to deactivate.

NoAI=0 Turns off all of the AI in the game. No until will fire. This is useful for scenario creation.
Because once you have everyone where you want them to start and facing the right
direction, you can then hit the 'L' key to dump their locations into unitlocs.csv in the main
folder. You can paste the columns from here right into your OB. Set this to 1 to activate AI;
0 to deactivate AI.

Alpha Omega=1 This capability allows you to display all units for both sides. This is a useful tool during
scenario creation. Set this to 1 to activate; 0 to deactivate.

[Variables] This section stores all of the dynamic variables used in the game.

DESIGN TIP: Once you have your TC**.ini set-up the way you like it, you can “turn off” an
initialization command by typing a colon <;> in front of it

13

Level.ini File

The level.ini file must exist for every Open Play and Custom Scenario. It defines game options that
can only be used at the scenario level. If you are designing a Custom Scenario, this file must be
created in your Custom Scenario folder. Open Play level.ini files are created automatically when you
generate an Open Play Scenario. An Open Play level.ini file can be found in the Open Play folder of
the main game directory.

File entry Explanation
[Init] Section header for initial part of the file
map=2ndM_28th.lsl Name of the map file in the /maps directory.
Weather=7 Sets the visibility and weather effects for the scenario: 0=very low visibility (300 yards),

8=as clear as it gets (1,000 yards). See the levels.csv (rows 1-25) for more details.
TimeOfDay=1 This sets the color of the sky in the scenario. 0=Day, 1=Dawn/Dusk, and 2=Night.
StrategicAI=0 If you set this to 1, the scenario will run like Open Play with the AI commanders

implementing a strategy to take over the objectives. This would be useful if you wanted to
write a scenario that just defined the starting positions and objectives. It makes sense to
use this capability with the Commander selection capability defined below (see Rank).

Carryover=1 The Carryover=1 command enables a scenario to act as the source of units.csv data for
another scenario. What “carryover” means is the end strengths of a scenario will be
“carried over” and become the beginning strengths for another scenario that contains
some or all of the same Commanders/Units. This carryover applies to both sides—Union
and Confederate. For example:

The TAKE COMMAND scenario SM03 - 28 Aug - King (U_Div) has the file entry
Carryover=1 in its level.ini file. This enables the SM03 scenario to act as the source of
data for the carryover scenario’s units.csv.

CarryOverFrom=
<Scenario Name>

The CarryOverFrom= command enables a scenario to act as the recipient of units.csv
data from another scenario. For example:

In the level.ini file of the scenario SM17 - 29 Aug - Hatch (U_Div), we see the file entry
CarryOverFrom=SM03 - 28 Aug - King (U_Div). Together, the effects of the
Carryover= and CarryOverFrom= commands together mean the player must complete
the SM03 scenario before he can play the SM17 scenario. The strengths of Union and
Confederate units that are in both scenarios will be carried over from SM03 to SM17. See
The Scenario Carryover Capability section of this guide for more carryover commands.

StartTime=09:15:00 Specifies the time of day that the scenario starts. Use military time (24-hour clock).
Example: 1 P.M. = 13:00:00

CommandHeight=40 Limit of camera height above the ground in yards. If you do not include this, the player will
be able to move the camera very high off the ground.

CommandRadius=500 Limit the camera can move away from the player’s character. This distance is in yards. If
you do not include this, the player can move the camera anywhere on the game map.

CantKillMe=1 Prevents player’s character from being killed in the scenario. If you use this option the
player’s character will never have an evtdeath event.

[Rank] This section sets the player’s character in the scenario. The numbers refer to the same
numbering system used in the file units.csv file (columns A-E). If all of these values are
set at 0, then the player will be able to choose to play any Commander displayed in the
Custom Scenario game screen.

Army=1 ARMY from column A of the units.csv
Corps=1 CORPS from column B of the units.csv
Division=2 DIV from column C of the units.csv
Brigade=2 BRIG from column D of the units.csv
Regiment=0 REGT from column E of the units.csv
This section shows an example of all the endscreen definitions for one Custom Scenario’s level.ini file. See The
EndScenario Command and EndScreen Definitions section of this guide for a detailed explanation pf endscreen

14

definitions. Also, study the level-ini files in the SDK Scenarios folder for other examples.
[EndPlayerDie] [EndPlayerDie]

screen=End_Union
headline=End_U_Tragedy.dds
article=EndKilled

[EndMajWin]

[EndMajWin]
screen=End_Union
grade=320
headline=End_U_MajVictory.dds
article=EndMajorSuccess
CarryOver=1

[EndWin]

[EndWin]
screen=End_Union
grade=240
headline=End_U_Victory.dds
article=EndMinorSuccess
CarryOver=1

[EndTie]

[EndTie]
screen=End_Union
grade=160
headline=End_U_Victory.dds
article=EndDraw

[EndFail]

[EndFail]
screen=End_Union
grade=80
headline=End_U_Defeat.dds
article=EndMinorFail

[EndMajFail]

[EndMajFail]
screen=End_Union
grade=0
headline=End_U_MajDefeat.dds
article=EndMajorFail

The EndScenario Command and EndScreen Definitions

endscenario . This is a new command and it is now the correct way to end a Custom Scenario. You
should call this command on the events.csv whenever a scenario is supposed to end. We no longer
call loadscreen to end the scenario.

There are two ways to call endscenario. One way is to use the command by itself; the other way is
to follow it by a specific screen definition name (see below). If you call endscenario by itself, it will
search the screen definitions in the scenario’s level.ini file to find the appropriate end screen for the
grade the player has achieved when the endscenario command was triggered. Since endscenario
must always be called, you must also put the carryover= flag in the screen definition.

Screen Definitions. These are found in each scenario’s level.ini file. There are no default settings
—you must have them. They are in .ini format. Only one screen can be defined per heading. The
screen= is the name of the specific screen defined in the gamescreens.csv file. Currently there are
two screens defines—End_Union and End_Confed. These just show the newspapers for the
different sides. The grade= is the grade that this screen will be used for. If the player achieves a
grade that is greater than or equal to the grade=, then the defined screen will be displayed.

The lowest grade defined in the file will be used for all lower grades. The carryover=1 means that if
this screen is displayed, the carryover .mmc file will be created. All other = are variables from the

15

screen in the gamescreens.csv file. Currently we have two, a headline for the headline graphic, and
a newspaper article. This entry is the name of the textid from screen.txt file that will show up as the
article. Using this method, any number of variables can be added to the screen and defined here.
Only include the grade line if you want this screen used in the default grade screen searching
process. Do not include it if you only want this screen to show when you call it specifically. Example:

[EndMajWin]
screen=End_Union
grade=300
headline=End_U_MajVictory.dds
article=EndObjs
CarryOver=1

The Scenario Carryover Capability

In this section, we will take a look at the underlying concepts for the scenario carryover capability. In
the examples below, we will use two hypothetical scenario names—Scen1 and Scen2—to act as our
examples. Scen1 is the first scenario to be played. Once Scen1 has been played to completion, then
the values from Scen1 will be carried over to Scen2.

• Units are found by name and name2. The units.csv file from Scen2 is loaded and then the
units.csv file of Scen1 is loaded. The game program then searches Scen2 for the same units
in Scen1 (by name). If a match is found, then the game program transfers the appropriate
data. So not every unit in Scen1 has to be in Scen2, and Scen2 can include units that were
not in Scen1. This comparison is case insensitive.

• Scen2 REQUIRES that Scen1 has been completed before it will run. In Scen1, the designer
must call the command endscenario as an entry in the events.csv file using the criteria they
feel the player must pass to successfully complete the scenario—and thus be allowed to
continue to Scen2. This will create a file <scen1.mmc>. This file will be created in the saved
games\cont folder. If this file is not there, then any scenarios that depend on Scen1 being
complete will not be able to load.

• The difficulty level for Scen2 will be the same as that set at the beginning of Scen1.

• Guns captured in Scen1 will be completely gone from Scen2. In fact, anything captured in
Scen1 is completely gone from Scen2. This includes captured infantry and cavalry Units—
consider them on the way to prison camps.

• Events.csv (Scen1)
o endscenario – This command must be called via the events.csv to create the pseudo

saved game file that is required for carryover from Scen1.

• Level.ini (Scen1)
o CarryOver=1

 This command says that if endscenario is called, then create the .mmc file.

• Level.ini (Scen2)
o CarryOverFrom=Scen1

 This says that the Scen2 scenario requires the Scen1.mmc file to begin, and will
use the info in that file for carryover.

16

o CarryOverMorale=1
 If the value of CarryOverMorale=1, then Scen2 will use the morale levels from

the carryover file of Scen1. If the value of CarryOverMorale=0, then Scen2 will
use the morale levels from Scen2 units.csv.

o CarryOverMoraleValue=-1
 This number will be added to the morale levels of all Units in Scen2. It will be a

level, not points. So if you enter the value as -1, then all Units in Scen2 will lose
one morale level. If you enter a value of 0, then their morale levels stay the
same. A value of 1 will cause all Units to gain one morale level. The program is
designed to make sure that Units do not go below the minimum morale level or
above the maximum morale level.

o CarryOverFatigue=1
 If the value of CarryOverFatigue=1, then the fatigue levels for all Units will carry

over from Scen1 to Scen2. If the value of CarryOverFatigue=0, then the fatigue
levels from Scen2 will be used.

o CarryOverFatigueValue=-1
 This number will be added to the fatigue levels of all Units in Scen2. It will be a

level, not points. So if you enter the value as -1, then all Units in Scen2 will lose
one fatigue level. If you enter the value as 0, then their fatigue levels stay the
same. A value of 1 will cause all Units to gain 1 fatigue level. The program is
designed to make sure that Units do not go below the minimum fatigue level nor
above the maximum fatigue level.

o CarryOverDead=1
 A value of 1 means that the program will restore all dead body sprites to the map.

A value of 0 means that it will not.
o CarryOverCasPct=50

 This is the percent of casualties that will be restored upon carryover. Casualties
are defined as the number of men alive that you started with minus the number of
men alive that you ended with. Do not use decimals or percent signs here. The
above value means 50 percent.

17

Designing an Open Play Order of Battle

The easiest mod to do with the quickest and highest personal payoff is to design an Open Play Order of
Battle (OOB). The only file you need to build for this type of mod is the units.csv file. When complete,
save this units.csv file as an OB_<name>.csv file; put it in your Open Play folder—and play! This
section describes what you need to do to build your own OOBs.

Types of Open Play OOBs

There are at least three types off OOBs that you can build for Open Play. These are as follows:

Historical OOBs. These OOBs are a true reflection of whatever history recorded them as. When
designing these, there is no consideration for “fair play” or “play balance” or of the extreme possibilities that
can occur when the Open Play scenario routine randomly selects units. War is all hell. If you can’t hack it
—pack it.

Competitive OOBs. These OOBs are built specifically to insure a balanced, “fair fight”, regardless of the
Commander or Command Level selected in Open Play. These will pit the player against the AI in an “all
things being equal” kind of scrap. Names of Commanders and Units are not relevant—pick whatever. An
equality of organizations, strengths, and similar Commander and Unit attributes is the goal for a
competitive OOB.

Hybrid OOBs. These OOBs are a cross between the Historical and Competitive types of Open Play
OOBs. Start with an Historical OOB. Identify and eliminate any potential extreme combinations of Union
and Confederate forces. Consider adjusting strengths or minor organizational changes to “balance” things
out. The goal is to maintain the flavor of the Historical OOB while reducing the chances of an “impossible”
situation being generated in Open Play.

The Units.csv

The units.csv file provides the Order of Battle (OOB) for Take Command. This file lists all of the
Commanders and Units that will be available for play in either a Custom Scenario or for Open Play.
Each Custom Scenario has a units.csv file that is used specifically for that scenario. This file is
located in that Custom Scenario’s .mmg file and/or scenario folder. There are also three units.csv
files located in the Open Play folder of the main game directory that are used for Open Play.

18

NOTE: A units.csv file used as an Open Play OOB must be named and saved using the
following convention: OB_<name>. For example: OB_2ndM. If the OB_ prefix is not
used, then the OOB file will not show up in the Open Play game screen OOB window.
Though it has a different file name, an OB_<name>.csv has the same content as a
units.csv file.

IMPORTANT NOTES:

- All headings for the columns are in the first row of the units.csv.
- You must list commanders and units in numerical sequence when building the army
structure; you cannot skip numbers.
- Supply wagon units must be entered as the last row of a division.
- A side’s courier unit must be entered as the last row of an army or the game will crash to
the desktop (CTD). As an example, check out the units.csv files contained in the SDK to
see how the last rows of both armies look.

Column Explanation
A: Army This value must equal 1 or 2. 1 is for the Union Army, and 2 is for Confederate Army. The first

five columns designate who the unit is. They must be in order and no number(s) can be skipped.

These columns are used to designate the command structure of the army. The structure MUST
be correct and in order or the game will crash when the AI starts to issue commands. There can
be only two armies. No gaps in #s...all values must be consecutive.

B: Corps The Corps ID number.
C: Div The Division ID number.
D: Brigade The Brigade ID number.
E: Regiment The Regiment ID number. If you want to have companies instead of regiments, then this would

be the company ID number.
F: ID Name This acts as a nickname for the unit and allows the scenario designer to name them specifically

for use in a scenario. Whenever this unit is referenced in another csv file, they will use this ID.
This is especially used in the events.csv file.

G: Class ID name from Column A of the unitcommon.csv file. Each unit must be associated with one
and only one class from the unitcommon.csv file. This will define attributes such as graphics
and sounds.

H: Weapon This column references the Weapons.csv file and is the weapon assigned to the unit.
I: Ammo Specify the ammo levels of the specific unit type. This is the amount of ammo that EACH

SOLDIER in the regiment will have. So multiply this number times the regiment’s strength to see
how much the entire regiment is carrying. For artillery, this amount is also per soldier, so for a
15 man gun crew, multiply this value by 15 to calculate the total ammo available for the gun.

J & K: Dir X/Dir Z This is a normalized 2D vector that determines the facing of the unit when the scenario starts.
This is pretty hard to compute, so we recommend that you use our automated process.

For full details please see the help on TC**.ini and the NoAI flag.

By hitting the “L” key while in game…the game will spit out a file into the main folder called
unitlocs.csv…use this file to set positions for Custom Scenarios.

L & M: loc X/loc Z This is the 2D coordinates of this unit's flag bearer on the map. The valid values are from 0.0 -
131072.0. Though we recommend not getting too close the edge of the map. As above, this is
much easier to set using the NoAI process.

N: Flags Specifies the flag graphic, from sprites.csv, of the specific unit.
O: Formation Specifies the starting formation, from formation.csv, of the specific unit for the scenario.
P: Name The name of this unit. Stored in the $name variable.

19

Q: Name2 The 2nd name for this unit. Stored in the $name2 variable. Also known as 2nd Line on the
units.csv file.

R: Name3 The 3rd name for this unit. Stored in the $name3 variable. Also known as 3nd Line on the
units.csv file.

S: Strength This is the number of men in the unit. Note that we always create a flag bearer, so he does not
count in this number. Also we create one sprite for every ten men. We show a max of 100
sprites per unit. So a unit will be full with 990 men, since one sprite is used for the flag bearer. If
there are more men, they will be distributed evenly among all the sprites of the unit.

For units with one man (ammo wagons and commanders), you can specify anywhere between 1-
10 men and still only have your one sprite plus the flag bearer. The number of men does not
matter for commanders and wagons. Artillery batteries have 15 men per gun.

UNIT TRAINING The rest of the columns have to match exactly the ROWS from the levels.csv file. Starting after
weather, each row of the levels.csv file is matched here in the units.csv file. This is important
because you CAN add more rows to the levels.csv file and match them in the units.csv file, and
it will work. You can add your own skills to the game.

Refer to the levels.csv file section to see what the min and max values can be for each different
attribute.

T-X: Commander
Attributes

These columns only affect commanders. They are explained in detail in the levels.csv file
section.

Y: Experience
(Quality)

This column affects both commanders and fighting men. It's the amount of battle experience that
they have. This is explained in more detail in the levels.csv file section.

Z-?: Regiment
Attributes

The rest of the columns affect only the fighting men, be they infantry, cavalry, or artillery. They
are explained in more depth in the levels.csv file. Note that the morale and fatigue columns
affect many items in the game that may not be mentioned in the levels.csv file. This is because
they are such a core part of the AI and fighting in TAKE COMMAND.

Column F: ID NAME. Column F is the Commander or Unit ID NAME. In the extract above, we see
that the data entry for King is U_RKing. You can use whatever naming convention you like in these
cells but there is one important rule to keep in mind: The names must be unique. In other words, no
other Commander or Unit can share this name. So...one unit, one name--and nobody else can have
this same name on your Open Play OB_ or units.csv file.

Naming Conventions for ID NAMEs. Here are some examples of naming conventions you might
use. If you don’t like these, you can make up your own—just remember the rules:

Commanders Units
RufusKing 22ndNewYork

AoV_RufusKing AoV_22ndNewYork
IIICorps_RKing IIICorps_22ndNewYork
III_1_AoV_CDR III_1_AOV_22NY

RKing_U 22ndNewYork_U
King1 22NY

Column G: CLASS . These CLASS names come from the unitcommon.csv file. If you want to
create a new class, it must be defined on the unitcommon.csv file before it can be used on the
units.csv file.

Column H: WEAPON . These Weapon names come from the weapons.csv file. If you want to
create a new weapon, it must be defined on the weapons.csv file before it can be used on the
units.csv file.

Column I: AMMO . You can put any number you want in these cells but here are some rules of
thumb.

20

Infantry. A good rule of thumb for assigning ammunition to the infantry is 40 rounds per man--that's
what a soldier could carry in his ammo pouch. This was the standard issue while on the march
because of the inevitable wastage due to exposure to rain, stream crossings, morning dew, humidity,
etc. Plus soldiers didn't like to carry anything more than what they thought they should have to carry
(many an "extra load" of ammo got tossed into the weeds if it lightened the load a bit).

If battle was imminent--and time and ammo was available to do so--it was not uncommon for soldiers
to be issued 60-100 rounds each. However, this additional ammo was often carried in a soldier's
pockets or backpack. It was very common to ground the backpack (take it off) before entering
combat. This allowed soldiers more freedom of movement while loading and firing, increased their
agility for moving quickly on the battlefield, and reduced the chances of fatigue. It also meant being
away from your extra ammo.

Consult the historical records and personal accounts if you want more precision to the ammo count--
you will often find references to how much ammo was actually carried in any particular battle. Lastly,
rifle-musket rounds came in packages of 10. Use this number as a guide for increases/decreases of
ammo carried by the infantry. Barring any information you might find to the contrary, 40 rounds per
man may be as accurate a figure as you can get your hands on.

Cavalry. The rule of thumb for cavalry is 40-100 rounds per man. As a portion of this ammo was
carried in the saddlebags—which will be with the horse if the trooper dismounts—40-60 rounds per
cavalryman is about right.

Artillery. Here are some rules of thumb for artillery ammo—these are maximum ammo loads.

Artillery Piece # of Rounds
6 lb Model 1841 13
6 lb Wiard 13
6 lb Model 1857 13
10 lb Parrott 8
12 lb Napoleon 10
20 lb Parrott 8
30 lb Parrott 6
3 in Ordnance 8
12 lb James 13
14 lb James 8
24 lb James 8
12 lb Whitworth 13
12 lb Armstrong 13
12 lb Blakely 13
12 lb Clay 13
12 lb Dahlgren (Howitzer) 16

Wagons. It is a rare occasion that a wagon will run out of ammo, but if you want to have the right
amount represented in the game, here are some general rules.

Infantry and Cavalry. A good rule of thumb for small arms ammunition is 100 rounds per man is
carried in the wagon that supports a particular organization (normally a division). To calculate this,
total the number of infantry and cavalry sprites in the organization and multiply this number by 100

21

(or by whatever number you have decided your basic load is going to be). Enter this number in the
ammo cell for that organization’s wagon.

Artillery. A good rule of thumb for artillery ammunition is the # of rounds from the table above per gun
in the wagon for the organization it is supporting. Add up all the ammunition being carried by the
artillery batteries of an organization and add that amount to and organization’s wagon.

Columns J, K, L, & M: Dir/Loc . Where am I at? Which way am I pointed? As we are designing an
Open Play OOB, we don't have to worry about these questions--positioning of Commanders and
Units will be determined by the game program when you start an Open Play scenario.

What to do? Enter 1, 0, 1, 1 under dir x, dir z, loc x, and loc z on your units.csv file for ALL
Commanders and Units in your Open Play OOB. For example:

dir x dir z loc x loc z
1 0 1 1

Column N: Flags.

Column O: Formation.

Column P, Q, & R: Names.

Columns S thru Y: Commander Attributes. The range of legal values listed below must be used in
defining Commander Attributes. Failure to do so could result in a crash to desk top (CTD).

Initiative. A Commander's initiative rating affects the rallying times of "broken" Units. AFFECTED
BY: Completing orders on time. There seven legal values for the Initiative rating. They are 0 through
6. Here is what they mean:

Initiative Ratings Initiative Value Rally Points
Commanders run or walk to "Support"
units (summed up - 0 or greater they

run)
Poor 0 10 -3

Mediocre 1 20 -2
Average 2 30 -1

Competent 3 40 0
Good 4 50 1

Very Good 5 60 2
Excellent 6 70 3

22

Leadership. The base Command Radii are measured in yards and are HARDCODED in the game.
The actual Command Radius assigned to a commander is based on the unit level he commands.
The hardcoded radii are as follows:

Level of Command Command Radius (Hardcoded)
Brigade 10 yards
Division 25 yards
Corps 50 yards
Army 65 yards

A Commander's leadership rating influences the size/area of his command radius. AFFECTED BY:
Combined battle grades of all subordinate Units. There seven legal values for the Leadership rating.
They are 0 through 6. Here is what they mean:

Leadership
Ratings

Leadership
Value

Command
Radius
Modifier

Commander
Bonus

Commander
"Support"
Distance

Commanders
run or walk to

"Support" units
(summed up- 0
or greater they

run)
Poor 0 -50 0 0 -3

Mediocre 1 0 10 -5 -2
Average 2 50 20 -7 -1

Competent 3 100 30 -10 0
Good 4 150 40 10 1

Very Good 5 200 50 7 2
Excellent 6 250 60 5 3

Loyalty. A Commander’s loyalty rating reduces the number of deserters from player’s routed Units.
AFFECTED BY: Total kill ratio of subordinate Units. There seven legal values for the Loyalty rating.
They are 0 through 6. Here is what they mean:

Loyalty
Ratings

Loyalty
Value

Command
Radius
Modifier

Rally Time
(in seconds)

Commanders
run or walk to

"Support"
units (summed

up - 0 or
greater they

run)

Regts max
morale modifier

(leaders
"loyalty")

Poor 0 -50 105 -3 0
Mediocre 1 0 90 -2 0
Average 2 50 75 -1 20

Competent 3 100 60 0 40
Good 4 150 45 1 60

Very Good 5 200 30 2 80
Excellent 6 250 15 3 100

23

Ability. A Commander's ability rating determines the amount of morale bonus given to a
Commander’s subordinate units. AFFECTED BY: Completing orders/mission goals. There seven
legal values for the Ability rating. They are 0 through 6. Here is what they mean:

Ability Ratings Ability
Value Commander Bonus

Commanders run or walk to
"Support" units (summed up

- 0 or greater they run)
Poor 0 10 -3

Mediocre 1 20 -2
Average 2 30 -1

Competent 3 40 0
Good 4 50 1

Very Good 5 60 2
Excellent 6 70 3

Style. A Commander's style rating determines...random behavior tendencies. There five legal
values for the Style rating. They are 0 through 4. Here is what they mean:

Style Rating Style Value Personality
Commanders run or walk

to "Support" units
(summed up - 0 or greater

they run)

Max ammo
per/man from

ammo wagon (in
rounds)

Cautious 0 -100 0 50
Defensive 1 -50 0 55
Balanced 2 0 1 55

Bold 3 150 1 60
Daring 4 200 2 60

Quality. A Commander's quality rating influences the size/area of his command radius. There eight
legal values for the Quality rating. They are 0 through 7. Here is what they mean:

Quality Rating Quality Value Command Radius
Modifier

Commanders run
or walk to

"Support" units
(summed up - 0 or
greater they run)

Player's
Commander runs

or walks to
"Support" units

(summed up - 0 or
greater they run)

Green 0 -100 4 0
Trained 1 -50 3 0

Fair 2 0 2 1
Regular 3 50 1 1

Good 4 100 0 3
Veteran 5 150 -1 3

Elite 6 200 -2 7
Crack 7 250 -3 7

24

Columns Y thru AG: Unit Attributes. The range of legal values listed below must be used in
defining Unit Attributes. Failure to do so could result in a crash to desk top (CTD).

Quality. Also known as Experience.

Quality
Rating

Quality
Value

Firing
(1,000
pts)

Misfires
(1,000
pts)

Melee
(1,000
pts)

Wheeling
Locked

(distance
in yards)

Units run
or walk to

ammo
wagon

(summed
up - 0 or
greater

they run)

Ammo
taken
from
dead

Unit
Morale
Bonus
Radius
(yards)

Firing
Time
(Rate

of
Fire)

Cover
Stand
Time

Green 0 0 0 0 140 -5 0 100 20 20
Trained 1 5 5 5 125 -4 0 100 10 10

Fair 2 10 10 10 110 -3 0 100 5 5
Regular 3 15 15 15 100 -2 0 120 0 0

Good 4 20 20 20 90 -1 0 120 -5 -5
Veteran 5 25 25 25 80 0 0 120 -10 -10

Elite 6 30 30 30 70 1 0 150 -15 -15

Crack 7 35 35 35 60 2 0 150 -20 -20

Fatigue.

Fatigue Rating Fatigue Value Firing
(1,000 pts)

Misfires
(1,000 pts)

Melee
(1,000 pts)

Units run or walk
to ammo wagon

(summed up - 0 or
greater they run)

Exhausted 0 -25 -10 0 -9
Weary 1 -20 0 5 -7
Tired 2 -10 0 10 -5

Winded 3 0 0 15 -3
Okay 4 0 0 20 -1
Fresh 5 0 0 35 0

Rested 6 0 0 50 3

25

Morale.

Morale Rating Morale Value Melee (1,000 pts)
Units run or walk to

ammo wagon (summed
up - 0 or greater they

run)
Routed 0 0 -6
Broken 1 0 -5

Panicked 2 0 -4
Wavering 3 0 -3
Shaken 4 0 -2
Uneasy 5 10 -1
Willing 6 30 0
Good 7 40 1

Confident 8 50 2
High 9 70 3

Accuracy. Number is added to the base value (# in red row in "Weapons" file)….random # is
selected & if same or higher…then a hit is scored.

Accuracy Rating Accuracy Value Firing (1,000 pts)
Untrained 0 0
Familiar 1 10
Qualified 2 15

Competent 3 20
Skilled 4 25
Expert 5 30

Specialist 6 35

Loading. Number is added to the base value in the misfire column ("Weapons" file)….random # is
selected & if same or higher…then the shot is MADE.

Loading Rating Loading Value Misfires (1,000 pts)
Untrained 0 0
Familiar 1 10
Qualified 2 15

Competent 3 20
Skilled 4 25
Expert 5 30

Specialist 6 35

26

Formation (Drill). Increases speed of wheeling and formation changes.

Drill Rating Drill Value Limber Time Cover Stand Time
Untrained 0 0 0
Familiar 1 0 -3
Qualified 2 -4 -4

Competent 3 -5 -5
Skilled 4 -10 -10
Expert 5 -15 -15

Specialist 6 -20 -20

Bayonet Drill. Increases hit % during melee.

Bayonet Drill Rating Bayonet Drill Value Melee (1,000 pts)
Untrained 0 0
Familiar 1 25
Qualified 2 50

Competent 3 75
Skilled 4 100
Expert 5 125

Specialist 6 150

First Aid (Medical). Returns higher % of wounded troops to active duty after the battle. This
attribute is NOT IMPLEMENTED IN THE TAKE COMMAND GAME SYSTEM YET.

First Aid Rating First Aid Value First Aid Modifier
Ignorant 0 -2
Familiar 1 -1
Informed 2 0
Educated 3 1

Knowledgeable 4 2

27

Breastworks. Speeds a unit's ability to make entrenchments/breastworks/defenses. This attribute is
NOT IMPLEMENTED IN THE TAKE COMMAND GAME SYSTEM YET.

Breastworks Rating Breastworks Value Breastworks Modifier
Untrained 0 -
Familiar 1 -
Qualified 2 -

Competent 3 -
Skilled 4 -
Expert 5 -

Specialist 6 -

Unit Attribute Values by Year. The following table is a quick reference guide for assigning attribute
values to units. This is intended for OOB and scenario designers who don’t have the time or resources to
conduct extensive historical research and analysis to make the subjective judgments required for the
assignment of attribute values to units in their OOBs.

Attributes Values Raw Green Trained Fair Average Good Veteran Elite Crack
Quality 0-8 0 1 2 3 4 5 6 7 8

Fatigue 0-6 Rested Rested Rested Rested Rested Rested Rested Rested
Reste

d
Morale 0-10 Good Good Good Good Good Good Good Good Good
Accuracy 0-6 0 0 1 2 3 4 5 6 6
Loading 0-6 0 1 2 2 3 4 5 6 6
Formation
Drill 0-6 0 1 2 3 3 4 5 6 6
Bayonet Drill 0-6 0 1 1 2 3 4 4 5 6
First Aid 0-4 1 1 1 1 1 1 1 1 2
Breastworks 0-6 0 0 1 2 3 3 4 4 6
 1 4 8 12 16 20 24 28 32
 1 4 8 12 16 20 24 28 32
 1861
 1862
 1863
 1864
 1865

The best way to use this chart is to view it as a set of value possibilities that gets larger over time. For
example, in 1861, the options available for unit assignments are limited to the Raw, Green, and Trained
attribute values. In 1862, the set of available options expands to Raw, Green, Trained, Fair, and Average.
This reflects the fact that new units were still being recruited and older units were gaining experience.

28

Designing a Custom Scenario

TAKE COMMAND was designed from the ground up to be modified by users to create new scenarios
using the historical and fictional battlefield maps that are included with the games. This section will
show how to create a new scenario from scratch.

DESIGN TIP: You can grab the units.csv, objectives.csv, and level.ini file from the
Open Play folder (after you have created an open play game) and use them to create a
scenario which you can mod any way that you want.

To demonstrate the process of building a new scenario, we will create a hypothetical fictional Custom
Scenario.

Planning. One of the most important aspects of scenario design is planning. If you are creating a
new historical or historical variant scenario, a good knowledge of the actual course of the battle is
needed. Even with a fictional scenario, some knowledge of the units involved is required. In addition,
a good study of the map that your battle will take place is needed. You do not need to have your
units starting at opposite sides of the map unless you really enjoy watching units march. A design tip
is to print out the Mini Map graphic file. The Mini-Map files are located on your computer at:

C:\Program Files\Paradox Interactive\Take Command - 2nd Manassas\maps\map
name_MM.dds

For this exercise we will set up a meeting engagement on the Cedar Ridge map. It will help to print
out the map: Cedar_Ridge_MM.dds. Note that you may need to get a program to change the file
format from .dds to a more traditional format like .jpg that programs such as Microsoft Word can
handle.

The basic concept for this battle is to have a collision between a Union division and a Confederate
division while both are marching to a distant destination—neither knows the other is in the area. We
will further assume that neither unit has cavalry pickets scouting the road ahead. This lack of
scouting happened more often than you might suspect. The Union forces will be marching on the
road just north of Deer Hollow with the goal of continuing east towards the Montgomery farm. The
Confederate forces will be coming out on the road just north of Cedar Ridge and heading north
towards Rocky Junction. If we design things correctly, this will lead to a collision of forces in the area
of Massey’s Store.

Scenario Files. Before we begin, we need to understand the basic structure of the scenario folder.
To take a look at the basic structure look at the directory on your CD-ROM SDK\Scenarios\OH3 -
Difficult Run - Starke (C-Div). In the root of the scenario file structure is one required file, level.ini,

29

which holds some basic information about the scenario and will be discussed in more detail below. In
addition to that file, there are two other required directories, Data Files and Text, and optional
directories. During the loading of a scenario, the game engine checks the scenario files and uses any
game file found there in preference to the equivalent file in the main game. This gives the scenario
designer wide latitude in altering the game, a potential that has barely been touched. Any of the five
main directories can exist in the scenarios folder and can override the main files of the game (maps,
text, data files, sounds, and graphics). So you can experiment by creating a scenario and copying
the files that you want to modify into your scenario folder without ever messing up the game.

Remember, file choices by the game engine are defined as follows:

1) Scenario loaded from .mmg or Custom Scenario Folder, and files in here will override those
files in the main game directory.

2) Next the main directories, the top level folders in the same folder as the .exe, files in here will
be used next.

3) Next the main TC**.mmg file. If the file does not exist in the previous two choices, the file will
then be loaded from here.

The data files directory must contain three files, events.csv, objectives.csv, and units.csv. Other
files can be added as needed. The text directory must contain a file screen.txt and a file intro.txt.
The first contains the text of various messages used in the scenario and intro.txt has the text used in
the bottom section of the ‘Choose a Scenario’ window on the ‘Custom Scenarios’ selection game
screen. Details of the contents of the *.txt and *.csv files are covered below.

New Scenario Example: For our new scenario, we are going to start with the CM03 division level
scenario. Go into the /SDK/Scenarios directory on the CD and copy the directory: OH3 - Difficult
Run - Starke (C-Div) into the C:\Program Files\Paradox Interactive\Take Command - 2nd
Manassas\scenarios directory. Next rename the directory to: M1 Meeting. In this scenario, we are
going set up a speculative meeting engagement on one of the non-historical open play maps.

First steps: MMG has built in some very useful tools for the scenario designer which we will take
advantage of. Using your text editor open up the game .ini file: C:\Program Files\Paradox
Interactive\Take Command - 2nd Manassas\TC**.ini.

Add the following text at the beginning of the file:

[Initialization]
DbgLvl=2
NoAI=1
Alpha Omega=1

Save the file and exit the editor. These commands do three very useful things for the scenario
designer. The first turns on the display that shows the location of the selected unit or officer in the
game X,Z coordinate system. This system is use by numerous files to specify the location of units
on the battlefield. The numbering starts at the lower left with coordinates 1,1 and ends at the top right
at coordinates 131071, 131071. For scale, the engine uses 32 units per yard. This makes the map
4096 yards by 4096 yards or 2.33 miles square. The second command totally disables all AI
functions so that units will not fight at all. This allows units to be marched all over the map without
starting odd battles. The third allows you to see and take command of any unit in either army.

Next shift to the scenario directory (C:\Program Files\Paradox Interactive\Take Command - 2nd
Manassas\scenarios\M1 Meeting and open up the file level.ini with your text editor. Edit the
second line to read: Map=Cedar_Ridge.lsl. This changes the site of the battle from the original

30

Chantilly map to the Cedar Ridge map. Change the start time to: 9:00:00 so that we have all day to
fight it out.

DESIGN TIP: Using the ‘;’ character at the beginning of a line in any *.ini file tells the
program that this line is a comment; the program will ignore all content of that line after the
semi-colon. If you use this technique, you can minimize the adding and deleting of
commands in the main and level .ini files.

Let’s give this design tip a try. Put a semi-colon at the beginning of these lines:

CarryOverFrom=SM29 - 30 Aug - Starke (C_Div)
CarryOverCasPct=5

So that they look like this:

;CarryOverFrom=SM29 - 30 Aug - Starke (C_Div)
;CarryOverCasPct=5

These changes disable the carryover commands that prevent you from starting this scenario.

Next change to the Data files directory and open events.csv. While setting NoAI=1 in the TC**.ini
file prevents conflict, it does not stop unit movement that is dictated in the events.csv file. Delete row
4 and rows 7 through 125. Change all of the remaining entries in the time column to 9:00:01 then
save the file and exit.

Moving US Units. Now, having done that—start the game. Go into Custom Scenarios game screen
and select the new M1 Meeting scenario. Select General Pope as your character and load the game.
After the game loads, nothing will happen until you specifically order it. You want to put the units in
march order along the road past Blacksmith back towards Reed’s Tavern and then down to Benton
Mills (see the map below). Find Colonel Marsena Patrick and select him. March him and his entire
brigade so that they are on the road passing Blacksmith. The head of the column should be
intersection with the road from Rocky Junction to Massey Store. When the head of the column is in
position, hit the Halt Brigade button to stop everyone in road march position. Use the right arrow key
to identify the next unit in line. Now march them into position. Repeat this process until all units are
in position as shown on the map below. Move Generals Pope, Heintzelman, and Hooker to just north
of the road near Patrick’s brigade. When you are all done, it should look like this:

31

Last and most importantly hit the ‘L’ key. This writes a file named unitlocs.csv intp the game’s root
directory (C:\Program Files\Paradox Interactive\Take Command - 2nd Manassas\). This file
contains the XZ location of each commander and unit on the map, as well as the direction that they
are facing at the time the ‘L’ key was hit.

Exit the game. Now open up unitlocs.csv in the main game directory, and also open up units.csv in
the M1 Meeting scenario directory. In unitlocs.csv select all of the first four columns (A-D) and
select Copy. Then open the units.csv and paste the information into columns J-M of the units.csv.
Save the units.csv and exit from both files. The Union units are now in the desired starting position.
Restart the game and select General Pope; make sure that all commanders and units are in the
correct positions.

DESIGN TIP: Make a “fast move” unitcommon csv to get troops into their scenario start-
up positions quickly. Here’s what to do. Make a copy of the unitcommon csv and place it
in the Data Files folder of the Main Game Directory or in your custom scenario folder.
Open this file and change all the RUN speed entries (column F) to 300. Save and close.
With this “fast move” unitcommon.csv, your Commanders and units will now move into
position at 300 yards per second! Don’t forget to remove this file when you get ready to
play.

32

Moving CSA Units. The process outlined above for the Union units is quite similar for CSA units.
Start the game, this time selecting General Jackson. When the game opens, hit the down arrow key
two times to change to Colonel Grigsby. Now road march his unit into position on the road south of
the Massey Store (shown below). March the rest of Starke’s Division into position along the road just
north of Cedar Ridge. Move Generals Jackson and Starke into the field just to the right of Grigsby.

NOTE: The ‘t’ key was used to remove the trees from the display so that the location of all
units could be seen clearly in the screenshot.

Again hit the “L” key to write all of the unit locations to unitlocs.csv. Exit the game and copy all unit
positions into units.csv as you did above. Save all files, and reopen the game to check that all units
are in position. On the in-game Mini Map, the positions of both sides should look like this:

33

M1 Meeting – Starting Positions for Both Armies

Finding X,Z locations. Next we need to find map locations for objectives and for destinations for
movement. On the display the lower line of white text on a black background shows the selected
units current location. The first number is the X coordinate and the last number is the Z coordinate.
For this picture:

The X coordinate is 67841 and the Z coordinate is 109581. The decimal fractions can be ignored
for scenario design.

Restart the game and select General Pope as your character. Move him to the to the road from
Rocky Junction to Massey Store, about half way between the intersection with the Blacksmith Road
and the intersection with Deer Hollow Road. Write down the X and Z coordinates. This will be the
marching destination for the Union forces. Next, move General Pope up to the intersection between
Blacksmith and Fisher’s Farm and record the X and Z coordinates to serve as a goal for the initial CS
marching orders. Exit the game. Finally, move him south and record the X and Z coordinates in the
middle of the field above where the text ‘Massey Store’ is located on the mini-map and just even with
the north end of the smaller patch of trees. This will serve as the victory location for this scenario.

34

Creating Objectives. Now open the objectives.csv file in the Data files directory. For this scenario
we will have one objective. It will be the Massey Store location recorded just above. In the Objective
Name column in row 16, enter Massey Store and in the Objective ID column enter Massey_Store.
Enter 100 in the AI column since we want this objective to be winnable by either side. Next in the loc
x and loc z columns enter the values that you recorded earlier. Scroll right and change the start
time to 9:15:00, leave the end time at 23:00:00 which means that it will stay up for the duration of
the game or until won. Next change the radius value (column H) to 150 which is the distance in yards
that must be clear of opposing forces for the objective to be won. Finally, set the interval for 0:20:00
(20 minutes), which is the time the objective must be occupied for a win. Since we want to have
winning the Massey Store objective to end the scenario, the type must be set to Major. Adjust the
other values as shown in the table below. Here is how the revised events.csv file should look,
because it is too wide for the page, it is shown in two parts.

Left side:

Massey Store Massey_Store Major hold 100 74113 66475 150 200

Right side:

50 0 0 0 1 9:15:00 23:00:00 0:20 Obj_Major Obj_UMajor Obj_RMajor

Save the file and exit. Restart the game and scenario to be sure that changes in this file have not
caused problems.

Managing Events. This is the core of the scenario. In this file, you dictate the specific movement of
units, courier messages, and leader stances with the goal of setting up the battle the way you would
like it to start. How it comes out is the intersection of the player’s decisions and the AI decisions.
There is significant complexity in these files and they amount to a miniature programming language.
In spite of that, it can be learned and some interesting and challenging scenarios can be devised. In
this case, we will be making one nearly from scratch since the existing one is for an entirely different
battle.

For this part open up both units.csv and events.csv as we will need info from the units.csv file to
feed into the commands in events.csv. Remember that the setup for this scenario is an inadvertent
meeting between two divisions on the march. So we will set up the initial commands for each unit to
be on the march towards their intended destinations. Let’s start with the CS forces since the initial
march command will be the only part of their action in the events.csv files since the player is
responsible for the rest of their actions.

The remaining lines from the starting scenario are left in so that the senior commanders are available
to send messages and so that the chain of command is intact. The command tcommon is shorthand
for ‘take command’ and removes that character from the control of the AI. This results in the division
commanders having command. The player’s character is C_WEStarke2 and the player’s character is
always tcommon.

The simple command to move Starke’s division would be to add one row to the events.csv file:

9:00:02 AM C_WEStarke2 Amoveto 85060 83550

However, because the previous row is to tcommon C_WEStarke2, this will not execute correctly.
The workaround is to issue the commands to the brigade and battery commanders. That looks like
this for a single brigade:

35

9:00:02 AM C_AJGrigsby Amoveto 85060 83550
9:00:02 AM C_AJGrigsby Aform Brig_Column
9:00:02 AM C_AJGrigsby Auseroad

The Aform command gives the unit a formation to assume when they reach their destination. The
Auseroad command forces the brigade CO and all subordinate regiments to march on the closest
available road.

Edit the events.csv to give the same commands to the remaining infantry brigades, the artillery
batteries, and the cavalry unit. Note that the ending formations will have to be changed, for artillery
use Artillery_Line and for the cavalry use CavBrig_Line. Save the events.csv file and load the
scenario. Select General Starke as your player and let the scenario run. The CS units should all
road march towards their destination. If all is correct, we will move onto the Union forces.

Since the Union forces will be fully under AI command, we can issue a single order to the division and
it should work correctly. Copy the last 3 rows for the CS unit and paste them below. Change the time
to 9:00:03 and the destination to the X,Z value you wrote down earlier. The ending formation can be
Div_Battle_Line. Change the unit name to U_JHooker, save the file and see what happens. If all
was done correctly, the Union forces all started along their road march as well. We have one more
row to add to the timed section of the scenario. This is the row to end the fight at a specific time.
Copy a time down one row and edit it to read 10:00:00, leave column B empty and put endscenario
in column C. This will end the scenario at 10:00 A.M. unless some other ending criteria are met
before then.

Testing. If the edits were made correctly, the scenario will load. It is not done yet but it is time for
the first test of the new battle. Edit the level.ini file in the root scenario directory so that the rank
section looks like this:

[Rank]
Army=2
Corps=1
Division=1
Brigade=0
Regiment=0

This will put you back in charge of Starke’s Division only and let the AI handle all of the other units. In
addition, edit the TC**.ini file and comment out the lines:

; DbgLvl=2
; NoAI=1
; Alpha Omega=1

Here’s how to turn off the location display and to re-activate the AI. Save the files and load the game
and let’s see a new battle in action. It’s probably a good idea to take notes of things that need to be
changed during the course of this first test.

Play through the game and pause to take notes on what is working well and what might need to be
changed.

In my battle, the Union forces were slow to react and to deploy. To help them out, let’s add some
explicit commands to the events.csv. If you restart the game and follow General Hooker, he sights
the first CS units about 9:00:40 or so. In war, sighting an enemy unit would be of high importance.
Hooker would want to learn as soon as possible how big the opposing force is. Let’s have the

36

general gallop out into the field where he can get a better view of what forces are approaching. The
commands will be:

9:00:45 AM U_JHooker moveto 75686 74010
9:00:45 AM U_JHooker run

NOTE: The moveto command moves only the leader, whereas the Amoveto command
moves both the leader and all units under his command.

Having seen that the CS forces are substantial, General Hooker would decide to deploy his division
for battle. To keep things simple, we will have the division deploy based on General Hooker’s current
location. The commands for this are:

9:01:33 AM U_JHooker Aform:Div_Battle_line
9:01:33 AM U_JHooker Auseroad
9:10:00 AM U_JHooker orders:probe

The last command gives him an explicit stance of Probe, which is attacking, but not an all-out attack.

Messages. One issue that must be fixed is that the messages from the courier are not relevant and
not arriving at the correct times. We will need to edit two files, events.csv and screen.txt. Open
both files and let’s see what is there.

In the events.csv file from OH3, here is a row that sends a courier message:

15:00:02 PM C_TJJackson courier:C_WEStarke2:loadscreen:Courier:C_Starke1

Here is the corresponding message:

$C_Starke1 <FONT=Georgia14,L,20,20,20>No.1 - General Jackson

Near Ox Hill
3:00 p.m. September 1, 1862.

<FONT=Georgia14,L,20,20,20>General Starke,

Resume the advance with your division down the Little River Turnpike;
clear any blocking forces so the Corps may advance.

<FONT=Georgia14,L,20,20,20>
Maj Gen T. J. Jackson
General Commanding
Left Wing, Army of Northern Virginia

//
//
//

The line in events.csv is a timed event and is used to send Starke the initial orders. In the original
scenario, no enemy units are in sight at the start of the scenario and Starke must march down the
road a ways to sight Union forces. Now, the first paragraph needs to be rewritten to fit the new

37

scenario and the second needs an adjustment. Here is text that can be used for the new version, or
you can write your own.

Near Cedar Ridge
9:00 a.m. August 10, 1862.

<FONT=Georgia14,L,20,20,20>General Starke,

Advance your division to Rocky Junction and then move east to the next village. Await further orders
there. Scouts have reported Union forces in the area, be ready for a fight at any time.

<FONT=Georgia14,R,20,20,20>
Maj Gen T. J. Jackson
General Commanding
Left Wing, Army of Northern Virginia

Make the needed edits to screen.txt and save the revised file. Now we need to add the commands
to deliver and log the message into the events.csv file. Insert a row in the events.csv file at the end
of the current list of commands to CS forces. The new command should be:

9:00:02 AM C_TJJackson courier:C_WEStarke2:loadscreen:Courier:C_Starke1

This sends the courier from C_TJJackson to CWEStarke2 and delivers message C_Starke1. Next
we need to log the message so it is available during game play on the message log screen. The
command for that is:

9:00:30 AM logmsg:Courier:C_Starke1

Always allow time for the courier to reach the recipient before logging the message. Save all of the
open files and run the scenario again to see how the new version plays. Take notes on anything else
that might need changing.

Additional items. One small item is that some of the units in the Union forces are not in march order
to start. Open units.csv and edit column O for Marsena Patrick’s 4 regiments. Change them all to
read Road_Column and change the row for Patrick himself to read Brig_RdCol. Repeat this for the
other two Union brigades and then save the file.

The file intro.txt in the text subdirectory contains the text that shows up in the lower left portion of the
Custom Scenario screen when that particular scenario is selected. Edit this file to reflect the new
scenario and save it with the same name.

Finally open the level.ini file and edit the victory levels. The victory point levels are usually set after
the playtesters have played the scenario a number of times. However, if you set the levels as follows,
this will be in the ballpark for this type of battle. To set the victory point levels, open the file level.ini
and scroll down. In the section [EndMajWin] edit the line to read grade=300. This means that if you
get 300 or more points, you are awarded a major victory. In the same way set the values in each
section as follows:

[EndWin] 150
[EndTie] 50
[EndFail] -150
[EndMajFail] -300

38

At this point, the scenario should be both playable and interesting. I should give you fair warning that
a number of iterations of testing and error finding were omitted as they did not contribute to teaching
you about making scenarios. However, if you choose to build new scenarios or modify existing ones,
you should expect many rounds of debugging before you are finally happy with the scenario.

Last Thoughts. This has hopefully given you a basic introduction into the rather complex world of
creating or modifying scenarios for the TAKE COMMAND game series. Combine the ideas you have
learned here with your imagination and you will be amazed at the results.

The Events.csv

The events.csv file is the script of events and triggers for everything that a scenario designer wants
to occur in a custom scenario. With this file, you can make any unit do just about anything you want.
However, there are limits. For example, if you give a brigade an order to march right through the
enemy lines, they will never make it. They will stop and fight as soon as they are in range of the
enemy. Because of the numerous variables involved, even if you scripted every single movement, a
scenario will not play out exactly the same twice in a row. The commanders and units have been
programmed to protect themselves, and based on their "stance" they will react to enemy forces they
can see. So realize this as you design your scenarios. Realize that the "Chaos that is War" has been
built into the game by design.

NOTE: The events.csv file is a required custom scenario file. However, it is NOT required
to be filled in. A scenario designer can set the strategicAI flag in the level.ini file. This will
allow the AI to take control of the battle.

Types of Event Commands. There are two major groupings of commands in the events.csv file.
These groupings are the Time Triggered Event Commands and the Action Triggered Event
Commands. The top of the events.csv file contains the time triggered events and the bottom
contains the Action triggered events.

Time Triggered Event Commands. These event commands will execute at a specific time listed in
a scenario’s events.csv file. These event commands are synchronized to execute at a stated time
based on the scenario start time. The scenario start time is designated in the scenario’s level.ini file.
These event commands will occur at the exact time stated on the events.csv file no matter what else
is going on in the game.

Time Triggered Events Explanation
A: Time This is the time of the day that the event should occur. These are of the format

HH:MM:SS (Hour:Minutes:Seconds). This is NOT the time since the scenario
started. This IS the time of the day. The start time of the scenario is in the
level.ini file. Use military time for afternoon or evening events, e.g. 15:00:00,
NOT 3:00:00 PM.

B: ID Name This is the ID Name of the unit from the units.csv file. Each unit that you want to
reference in this file must have an ID. This is the unit that will be affected by this
event.

C: Command This is the command that will be run for this event. Commands that take multiple
parameters have their parameters separated by “:” (colons), except those
commands that take coordinates as described below. Please see the commands
reference for a complete list of commands.

D & E: X & Z Coord On our map there are two coordinates that matter, x and z. Since y is up and we
don't allow airplanes, y does not matter. All commands that require map
coordinates will get the x and z from these columns. For example: moveto,

39

forcemove, and safeplace.

F: Time Var This column specifies to run this command a certain amount of seconds in the
future. So if you want something to happen two minutes after an event is
triggered, you can set this column to 120. Then, two minutes after the event is
triggered, the command on this row will run. Note that this affects only the row
that it is on and not any others that may be in an event triggered action grouping.

Time Triggered Event example:

Time ID Name Command X Coord Z Coord time var
17:30:00 PM U_NPBanks tcommon

What this means is at 5:30 P.M., the game engine will take command of Major-General Nathaniel P.
Banks away from the AI. In other words, he will not be able to issue orders to his subordinate units.

NOTE: Game performance will lag if you have too many time triggered events happening at
the same time; so we suggest spacing them out time-wise. Try to schedule your events so
that no more than 10 events are triggered every second at the beginning of a scenario.
Later when fighting may be going on, this should be reduced to an event every 5 seconds
or so.

It really only makes sense to use timed triggered events at the beginning of a scenario to get things
rolling—but that's up to you. You may want to use timed triggered events later in a scenario; the
arrival of reinforcements for instance. Experience has shown that scenarios work best when timed
triggered events are used early in the fight and when action triggered events are used later in the
battle.

Action Triggered Event Commands. These events will trigger when some specific action happens
during game play. The following table shows the events.csv layout for the action triggered events. It
is much like the layout of the time triggered events with the exception of the first two columns on the
trigger row.

Triggered Events Explanation
A: Trigger Type This is the event trigger type as defined in the table above. This can also be an evtcont to

link this row with the previous event trigger type.
B: ID Name This is the ID Name of the unit from the units.csv file or the objective from objectives.csv.

Each unit that you want to reference in this file must have an ID Name. This is the ID Name
of the commander or unit that will be affected by this event.

C: Command This is the event command that will be run for this event. Event Commands that take
multiple parameters have their parameters separated by: colons, except those commands
that take loc x, loc z coordinates as described below. Please see the Commands
Reference section for a complete list of commands.

D & E: X & Z Coord On our map there are two coordinates that matter, x and z. Since y is up and we don't allow
airplanes, y does not matter. All commands that require map coordinates will get the x and z
from these columns. For example: moveto, forcemove, and safeplace.

F: Time Var This column specifies to run this command a certain amount of seconds in the future. So if
you want someone to happen two minutes after an event is triggered, you can set this
column to 120. Then two minutes after the event is triggered, the command on this row will
run.

40

Action Triggered Event example:

Time ID Name Command X Coord Z Coord time var

evtdeath C_JAEarly endscenario:EndPlayerDie

What this means is regardless of what time it is during the game play of this scenario, if Brigadier-
General Jubal Early gets killed—it’s Game Over! Go to endscreen…

DESIGN TIP: There are many game commands in TAKE COMMAND. They can be used
to support toolbar buttons, menus, and in the events.csv file for any Custom Scenario. All
commands are in lowercase. If you preface a command with the capital letter A, then this
command will affect all units subordinate to the Commander receiving the command. So if
you have a brigade Commander selected and you click a button that sends the 'run'
command. Then only he runs. But if you have that button send the 'Arun' command, then
the brigade Commander and all regiments under him will run.

As stated above, an action in the scenario during game play triggers these events. They may never
happen, but with some experience you'll find that the triggered events are the most powerful. In the
table below we describe all of the Action Triggered Events.

Action Triggered Events Explanation
evtarrived This event is triggered when the unit defined in column: B has arrived at the

location define in columns D & E. This means that the unit in column B is stopped
and within 100 yards of the location. Also that all of his subordinates are also
stopped. This is used to determine that a formation is halted and set up.

evtIarrived This is when you want to trigger an event on just the leader. This triggers when
the leader only has arrived at the location defined in columns D & E. The
subordinate units can be anywhere on the map. The most common use is to
trigger an event when the leader of a unit arrives at a specific road location without
waiting for the rest of the unit to arrive.

evtcont This is not a trigger, but is used to add other event commands after an event
trigger. Since one row on the events.csv can only be used to trigger one
command, this is the command to use to add more commands to one event
trigger.

evtcourier This event is triggered when the unit defined in column: B has received a courier
message. Since the AI sends couriers all around the battlefield, use this command
carefully as the first evtcourier command is executed when the first courier
arrives, and the second evtcourier command with the second courier. Proper
sequencing must be well thought out.

evtdeath This event is triggered when the unit defined in column: B has died. This is how
we end the game when the player dies. It can also be used to add some variety to
a scenario, because units may or may not actually die.

evtfailcheck This event is triggered when the unit defined in column: B has reached the fail
grade. The fail grades are command specific. These are the events that we use
in open play to end the battle. Each level of command has its own fail grade. By
adding this event to a unit, that unit will now do fail checks. If their grade falls
below the fail grade for their command level, then this event will be triggered.

evtfighting This event is triggered when the unit defined in column: B has first engaged the
enemy.

evtgiveup This event is triggered when the unit defined in column: B has given up. This
means that they have lost all of their subordinate units.

evtgrade This event is triggered when the unit defined in column: B has reached a certain
grade. Note that this is a greater than or equal to >= comparison and will not work

41

to see if a unit has reached a low grade, only a high grade.
evtintrouble This event is triggered when the unit defined in column: B is in trouble. This state

can be seen by the displaying of the in trouble icon over that unit. It usually means
that all of their men need rallying and that this unit is really no longer a fighting
force.

evtobjarmy1 This is just like evtobjdone, except that it is only triggered when army 1 has
completed the objective.

evtobjarmy2 This is just like evtobjdone, except that it is only triggered when army 2 has
completed the objective.

evtobjdone This event is triggered when the objective defined in column: B has been
completed. If this is a hold objective, then this will trigger the first time it is
completed. Note that this requires an objective ID, not a unit ID Name.

ranevt Define a random event.

Example: ranevt:Union:3

In this example, <ranevt> is the command that tells the engine that you are going
to declare a random event. <Union:> is the name of this random event. This
random event name can be anything you want it to be. The entry <3> tells the
game engine that you want it to generate a random number between 1 and 3.
This random number (once generated) tells the game engine which <evtran> to
execute.

This example assumes you have only three alternative course of action (evtran).
You can have any number of alternatives (evtran)—just change the random
number generation requirement to match the number of alternatives in your
design.

evtran Execute a random event.

Example:

This is a continuation of our <ranevt> example above. We need to define at least
one <evtran> but we can define no more than three (because we stated in the
example above that the engine needed to generate a number between 1 and 3).
An evtran statement has the command <evtran> plus the random event name
<Union> plus the random number generated <1, 2, or 3>. So for example, the
final <evtran> statements would look like this:

evtranUnion1
evtranUnion2
evtranUnion3

evtseetarg This event is triggered when the unit defined in column: B has first seen the
enemy. This is used for commanders and it means that one of the regiments
under their chain of command can see the enemy.

The Objectives.csv

The objectives.csv file defines all of the objectives (waypoints, victory sites, victory points, etc.) for a
scenario. There are different types of objectives and different ways to win them.

NOTE: All of the points and bonuses are awarded each time a hold objective is won—even
if it has been won 100 times previously.

42

Column Explanation
A: Objective
Name

This is the name that is displayed to the player. This is currently used on the strategic map, the
objective countdown timer, and the commander’s pop-up display.

B: Objective
ID

This is the ID name of the objective that is used in other files to reference this objective. Mainly this
is used in events.csv.

C:
Major/Minor

This is just the word major or the word minor. The only difference in these two values is the display
on the strategic map and how the AI evaluates the objective. It does not affect the player at all.
Originally we had some more ideas for this and there may be more in the future, but for now, it
doesn't do much.

D: Type This column really determines how an objective acts. There are two valid values here: hold or
waypoint. These are very different beasts. A hold objective will always reset itself. It will never
end unless an event terminates it. Every time that it is won, points and bonuses are awarded and
the timer will reset. A waypoint will not. A waypoint can only be won once, and then it will
disappear.

E: AI This determines who cares about this objective. An objective can be set up to be valid only for 1
army, or only for the player, or for everyone. This will affect the AI, as the AI will not care about a
player only objective.

0: player only
1: army 1 (Union)
2: army 2 (Confederate)
100: everyone

F: loc x The X coordinates of the objective.
G: loc y The Y coordinates of the objective.
H: radius
(yds)

This is the radius of the invisible circle surrounding the objective. The only units that are counted in
determining who is holding this objective are those within the circle or within this radius.

I: Number of
men

The minimum number of fighting men that must be within the radius to hold the objective. The only
way to win an objective is to have more than this number of men within the radius as well as a
commander. They must remain within the radius for the duration of the objective. If there are
enemy also within the radius, you will lose the objective unless you have twice as many men as the
enemy. If the enemy has twice as many men, then they will be holding the objective. If neither side
meets these criteria then the objective is considered not held.

J: Points The number of points added to the grade of the commander that is holding the objective when the
time limit runs out.

K: Fatigue
Bonus

This is the number of fatigue points added to all of the fighting men that are subordinate to the
commander that won the objective. It is much better to hold an objective with a high ranking
commander than a low ranking commander, as many more units will receive the bonus.

L: Morale
Bonus

This is the number of morale points added to all of the fighting men that are subordinate to the
commander that won the objective. It is much better to hold an objective with a high ranking
commander than a low ranking commander, as many more units will receive the bonus.

M: Ammo
Bonus

This is the amount of ammo added to all of the fighting men that are subordinate to the commander
that won the objective. It is much better to hold an objective with a high ranking commander than a
low ranking commander, as many more units will receive the bonus.

N: Occupied
Modifier

This value is multiplied by the points and all of the bonuses if the objective site was previously
occupied. This means that you can make it possible to give them more points if they had to fight for
the objective.

O: Start Time This is the time of day that the objective will become active and appear on the map. If you want to
only have the objective become active when triggered by an event, then set this to some time that
will never be reached in the scenario, such as 23:00:00.

P: End Time This is the time of day that the objective will become inactive and disappear from the map. It does
not matter if it has been won or not, if the end time is reached and the objective is still active, it will
disappear. This is awesome for creating scenarios where units have to reach a location by a certain
time.

Q: Interval This is how long an objective has to be consecutively held to win the objective. If the commander
leaves the radius or the number of men drops too low, or if the enemy comes in with too many men,
this timer will be reset. When all the criteria are met, this will start counting down. You can see this

43

timer by selecting the commander that is holding the objective.

R: Sprite This is the sprite name from sprites.csv that will be shown if no one is holding the objective.
S-Z: Army 1-? This is the sprite name from sprites.csv that will be shown if this army is in control of the objective.

Intro.txt

The intro.txt file is test that is displayed in the window in the lower left in the Custom Scenarios
screen. The first line must start with $Intro and include the font, justification and color information.

$Intro <FONT=Georgia16,L,8,12,24>Uneven Stevens, Steven's Division

The text between <> are the formatting commands, and the rest is the part actually displayed on
screen. Here is the interpretation:

Entry Interpretation
FONT=Georgia16 This specifies the font that the message text is displayed with. Fonts and font equivalents

are listed in the file Fonts.csv in the \SDK\Data Files directory.
L Left justify text, can also have C for center or R for right justification
8,12,24 Text color in RGB coding.

The <FONT=Georgia16,L,8,12,24> information does not need to be repeated unless you wish to
change the font, size or color of the text. For example, this line:

<FONT=Georgia14,L,38,58,150>Length of play:<FONT=Georgia14,L,8,12,24> 1.5 hours

Displays the text “Length of play:” in blue color and “1.5 hours” in black text, and looks like this on
screen:

Screen.txt

The screen.txt file holds the text of any screens and messages that appear during game play. The
formatting is the same as in intro.txt. The first line of each message must have the message header
string that is called in events.csv. Here is the beginning of the first message of the OH1 scenario:

$UN_Stevens1 <FONT=Georgia14,L,20,20,20>No.1 - General Reno

Near Ox Hill
5:00 p.m. September 1, 1862.

The $UN_Stevens1 is the message header, as above the text between the <> is the font and
formatting specification, and the rest is the text that is displayed on screen. If you have double
forward slash (//) alone on a line, this is displayed as a blank line.

44

The screen.txt file also holds customized text that is displayed as the headlines on the End of Battle
newspaper screen. The formatting is the same as above. As an example here is the first headline
and text for the OH1 scenario:

$EndMajFail <FONT=Georgia16,C,0,0,0>Slaughter in the Storm!

<FONT=Georgia14,L,0,0,0>Brigadier General Isaac I. Stevens gave an embarrassing display of
command ineptitude, even by the low standards of the Union Army. He sent his small division
headlong on the attack into the entire Corps of the vaunted Rebel General Stonewall Jackson.
This attack was pressed forward in a driving rainstorm, rendering ammunition useless. The
remains of his division should be placed in the command of a general with some sense!
//
//
//

This is the text that is displayed if the player is scored with a major defeat in the scenario.

The Names.csv

The Names.csv file is a list of names that we use to generate random commander names to replace
commanders killed during game play.

Column Explanation
A: Rank Randomly assigns a rank to a fallen commander.
B: First Name The list of random first names. If you put your own first name in here, it will eventually show up

during game play.
C: Last Name The list of random last names. If you put your own last name in here, it will eventually show up

during game play.

45

Mod/Add a Uniform

Overview. There are two parts to the process, editing the graphics files themselves and modifying
the text files that specify which unit uses which graphic file for their uniform.

Memory Usage. Uniform graphics are held in memory – the standard set of eight uniform files for
infantry takes up about 3.4 MB of memory. The new Hi-res Graphics sprite sets take up about 8.2
MB of memory. The memory usage can be changed by the various selections on the Options screen.

However, there is no requirement to use graphics in the TAKE COMMAND game series format.
Uniform files can be less detailed and have fewer frames of animation, with much less memory
usage. One early decision is where to set your tradeoff between number of uniforms and level of
detail on each uniform. How critical this is to you depends entirely on how much RAM you have on
your system. If you have 4 GB of RAM, go wild.

Graphics files. Each uniform requires a set of eight matched graphics files for the required game
actions: stand, shoot, melee, march, charge, double quick, prone, and death. All unit graphics in
TAKE COMMAND are in *.dds format. The standard infantry graphics show 16 angles in each row of
each figure with between 10 and 40 rows per file. In theory, each of the 2240 frames that go into one
uniform set could be edited by pixel. However, this is a somewhat time consuming method. An
alternative is to use programs like 3DStudio Max or LightWave. In addition, graphics files from
other games can be imported provided that the image angles go across and the frames go down.
The correct values for these files need to be entered in the sprites.csv file but they should work.
Whatever the solution adopted, the full set of eight sprite files must be either imported or created.

CSV files. After you have made the set of eight graphics files you need to get the new uniform in the
game. This can be done on a per scenario basis by editing the set of four .csv files that specify which
graphics files go with which action and which unit uses which uniform type(s). This is done fairly
easily by using the WarEdit Utility or a spreadsheet program like Microsoft Excel or to keep
everything lined up properly. The four files are: sprites.csv, unitsprites.csv, units.csv, and
unitcommon.csv. Let’s look at these in more detail.

Sprites.csv is the file that deals with the details of using the *.dds file as the source of the animation
in the game. Each graphic file is assigned a name used by other files in the game. Other parameters
dealing with the nuts and bolts of animation are in this file as well. See the Mod/Add a Uniform: The
Sprites.csv section of this guide for details.

unitcommon.csv is the file where the specific uniform graphics files are assigned to a unit class. Up
to six uniforms can be assigned to a unit class. These uniforms will appear at random on the sprites
in that unit. There is no limit on how many uniform classes may be declared. The name in each
uniform column must match a name in the ‘type’ column of unitsprite.csv. See the Mod/Add a
Uniform: The Unitsprite.csv section of this guide for details.

units.csv is the primary OOB file. The column of interest for uniform modding is column G, ‘Class’.
The entry here must match the ‘Class’ entry in unitcommon.csv and determines which uniform(s)
are worn by which specific unit in the game. See the Designing an Open Play Order of Battle: The
Units.csv section of this guide for details.

46

Unitsprite.csv is the file where the eight names that are associated with the eight *.dds files in
sprites.csv, are linked to a uniform ‘type’ used in the unitcommon.csv file. The name in each
column must match the name in the ‘Name’ column of sprites.csv. See the Mod/Add a Uniform:
The Unitcommons.csv section of this guide for details.

Example of a simple uniform mod.

To demonstrate the process we will walk through the process of doing a simple uniform mod. For this
example, we will insert a set of uniform files for Confederate soldiers with bandages, representing
walking wounded returned to the ranks.

NOTE: We have not actually created this set of uniform graphics files, so please do not ask
for them. Perhaps someone in the mod community will actually create this set of files.

The first step is to do the actual graphics editing. There are two strategies, pixel editing which is
cheap but very tedious or 3D editing which requires one or more comparatively expensive
program(s), but is much faster.

For the pixel editing example, we will add an arm bandage to the standard C_Regular file set. If you
were doing this by pixel editing, these are the steps. First, in the graphics directory copy the file
C_REGULAR_Stand.dds and name the copy C_Regular_B_Stand.dds. Repeat the process with
these files:

C_REGULAR_March.dds
C_REGULAR_Shoot.dds
C_REGULAR_Melee.dds
C_REGULAR_DblQuik.dds
C_REGULAR_Charge.dds
C_REGULAR_Prone.dds
C_REGULAR_Death.dds.

When you are done, you will have eight C_Regular_B_*.dds files to edit.

Using pixel editing requires a program that can read and save *.dds files. There are a number that
can do the job that can be purchased either commercially or downloaded as shareware or freeware.
Regardless of the program, open the C_Regular_B_Stand.dds file in the editor. In the first image,
edit the pixels to add the white bandage on the right arm. Repeat 2239 more times to convert the rest
of the images in this and the other six C_Regular_B_*.dds files.

A somewhat less tedious method is to load the files into a 3D rendering program, do the editing there
and then write out the edited files with the appropriate parameters. One program that will do this is a
program called 3D Studio Max. The details of using these 3D programs are beyond the scope of this
guide. Consult the ‘Modders Corner’ on the MMG discussion boards for pointers to books or
websites describing this process in more detail. After the 3D models are created, the 2D graphics
files need to be created or rendered from the 3D models. This must be done for all eight file types.

After you have finished up creating or editing all eight of the graphics files, you need to do some
editing of *.CSV files to get the game to recognize them. Let’s assume that you will be opening the
*.csv files in a spreadsheet program; thus we will refer to row & column designations accordingly.

First open up the file sprites.csv, and move down to row 117. Insert eight (8) blank rows below.
Next type in the name for each of the eight types and the matching name for the * dds file. Next,

47

enter the appropriate numbers for each of the animation columns. If you are using the same number
of frames and rows as the base game, you can simply copy the data from the existing equivalent file.
See the section below on the sprites.csv for details of the animation values. For the wounded
Confederate example, the end results should look like this. Using this order will make things easier
for other files.

C_REGULAR_B_March C_REGULAR_B_March.dds 64 64 16 15 3 -1 0 0
C_REGULAR_B_Stand C_REGULAR_B_Stand.dds 64 64 16 10 250 -1 0 0
C_REGULAR_B_Shoot C_REGULAR_B_Shoot.dds 64 64 16 40 10 35 0 0
C_REGULAR_B_DblQuik C_REGULAR_B_DblQuik.dds 64 64 16 15 4 -1 0 0
C_REGULAR_B_Charge C_REGULAR_B_Charge.dds 64 64 16 15 3.2 -1 0 0
C_REGULAR_B_Melee C_REGULAR_B_Melee.dds 64 64 16 30 10 20 0 0
C_REGULAR_B_Death C_REGULAR_B_Death.dds 64 64 16 15 4.5 -1 0 0
C_REGULAR_B_Prone C_REGULAR_B_Prone.dds 64 64 16 15 4.5 -1 0 0

The values in column B must be the exact filenames of the graphics files in the \Graphics\Units
directory. Save the file in *.csv format.

Next open up the file unitsprite.csv, move down to the bottom of the data and enter a type name in
column A, for this example, use C_Regular_B. Next enter the names from column A of sprites.csv
into columns B-H. A useful technique is to copy the names in column A and then <Paste
Special/Transpose> with the active cell in column B. The end result should look like this:

C_Regular_B C_REGULAR_B_March C_REGULAR_B_Stand C_REGULAR_B_Shoot
C_REGULAR_B_DblQuik C_REGULAR_B_Charge C_REGULAR_B_Melee C_ REGULAR_B_Prone
C_REGULAR_B_Death

The values in columns B-H must match the values in column A of sprites.csv. Save this file in *.csv
format and continue with the next file.

The third file to edit is unitcommon.csv in this file. Scroll down and insert a row below row 75. Copy
all of the information from the row above and paste it into the blank row. Next change the entry in
column A, ‘Class’ to C_Regular_w_Bandage. Change the value in column F, ‘Uniform 1’ to read
C_Regular_B. Leave all of the other columns alone unless you have created new sound files to
match the uniform. In this case, units using the C_Regular_w_Bandage uniform set will have one in
every four sprites with the bandage uniform set.

The name in column F must exactly match the text from column A of unitsprite.csv. If you have
additional uniforms for this unit, they can be entered in columns G-K. Matching entries must be in the
unisprite.csv. A maximum of six (6) uniforms is allowed per regiment; these will used to randomly
populate formations with individual sprites. Save this file in *.csv format and continue with the final
file.

The last file to edit is units.csv from a scenario or an Open Play OP_*.csv file. Go down to the row
for the unit you want to have the bandaged uniform set and over to column G ‘Class’ and enter
C_Regular_w_Bandage which is the exact text from column A of unitcommon.csv. Save in *.csv
format.

If you have done things correctly, the new uniform type will show up in on the game in open play or in
any custom scenario where you have specified this uniform in the units.csv file.

48

The Sprites.csv

The sprites.csv file defines all of the in game sprites. If it's not listed here, it's not in the game. All of
the sprites here are kept in memory during the entire game (not on the main menus). There is a
filtering method to not load sprites that are not referenced, but once it's loaded, it stays.

NOTE: This is important to remember because the number of sprites that we have is
directly related to why we demand a 64MB video card. These things take up a lot of
memory that has to be switched to the video ram for display. That's why if you boost your
system ram very high and your video card very high, you sometimes can get the game to
run on less than a 1Ghz processor. I've had it running on a P3 600Mhz, with 1Gig system
ram and a 128MB video card. I had to run in low mode, but it ran. The number of sprites
that we use has been a constant battle between Adam and me. He was looking to make
the best looking game and I was trying to make it run well. We compromised.

NOTE: Whenever you make a 3D game you must understand the payoff of using sprites
vs. 3D models. 3D models are cooler and use less memory because you only need a small
texture to map on the model. You don't have to create a separate texture for each frame of
animation. But the problem is that 3D models use a lot of polygons. This is what affects
video performance. Each sprite uses 2 polygons, where as a 3D model could use 10-20
plus and it wouldn't look that good. By using sprites we are able to get a lot more men on
the map. We have over 20,000 sprites on the map at any given time. We could never do
this with 3D models. Everyone would have to buy a $500 video card. So the payoff is that
we can show a lot of guys, but we have these gigantic animation files and require lots of
video ram and system ram. The houses, stone bridge, fences, and walls are actually 3D
models.

The top of the sprites.csv file starts with a small list of sprites that must exist. That means that the
game itself will be looking for the sprite name and if it's not there it may crash. You can change the
graphic and anything else about the sprite, but the sprite name must exist.

Column Explanation
A: Name This is the identifier by which this sprite will be called in all of the other csv files and sometimes

directly from the program. It cannot have spaces. I suggest using some type of naming convention
because as the sprite list grows, you can lose yourself in the detail.

B: File This is the name of the graphic file on disk that this sprites name refers to. Now the graphic
directories are split up into sub directories just for organization purposes. All sprites referenced in
objectives.csv are in the misc folder of the main game directory. Sprites used in the unitsprite.csv
are in the units directory. Sprites in units.csv, which are only the flags, are in the flags directory.
Sprites in effects.csv are in the effects directory. Sprites in map_name.csv are in the terrain
directory. Sprites in toolbar.csv are in the toolbar directory.

The graphics for TAKE COMMAND are all in .dds format which uses significantly less memory that
the TGA graphics used in CWBR. This memory saving has allowed us to bring in the Hi-Res files.
Files should be saved with no MIP maps. For figures for infantry, artillery, cavalry or flags, use DXT5
and for terrain objects, use DXT1.

Graphics can also be 24bit TGA files with a separate alpha channel or PCX files with solid black as
the alpha. We believe these will work in all cases. The only problem with PCX files is that they have
a hard alpha and don't look as nice, but the files are smaller.

C: Width This is the width of one frame of the sprite in pixels. It is not the entire size of the file unless the file
only contains one graphic. Since video cards will always change the size of the sprites to the next
power of 2, there is no point in making a sprite 60x60, since the game will automatically move it up to
64x64 which is the next power of 2. It may reduce the size of the file, but there will be no performance

49

boost.
D: Height This is the height of one frame of the sprite in pixels. It is not the size of the file unless there is only

one frame in the file.
E: Scale This tells the game engine what size you want the sprite to be in the 3D world. You can shrink or

grow the sprites depending on your specific needs. For example if you put 0.5 here, the sprite will be
50% of its original size in the world. If you put 2.0 here, then it will be 200%. You can leave this
empty if you want it the same size as shown in your particular .dds graphics file.

F: Hi Width This is the width for one Hi Res sprite frame in pixels.

G: Hi Height This is the height for one Hi Res sprite frame in pixels.

H: Hi Scale This is the scale factor for Hi Res sprites

J: Angles
(across)

This is the number of cells across that the file has. Currently we use 16 frames for our units. This is
because it looks much nicer in the game. Previous sprite based games only had 8 angles, which
showed a lot of popping as their direction changed. By using 16 angles the popping is greatly
reduced but the file size and memory image is greatly increased. You can define as many angles you
want for your sprites. That is completely up to you. It is suggested that you keep them to a power of
2, otherwise it would look strange. The toolbar buttons also use this as they are referenced by
specific cell in the toolbar.csv file.

Note: When creating a new unit graphics file, you must follow the Take Command facing conventions
in sequencing your animation frames. The first frame must be facing away from you (looking at its
back). The frames then continue rotating to the right across the row. They must rotate to the right up
until the last frame, which would then rotate to look like the first frame. This is easily seen by opening
up any of our unit graphics files.

K: Frames
(down)

This is the number of cells down each column. The frames of animation go down a column. With
each cell down being the next frame and the last cell continuing back to the first cell at the top of the
column. Any unit or terrain sprite can have angles and frames. They will automatically be handled by
the program. Currently our trees and terrain sprites only have one cell in their files. But it would be
easy to add animated trees with multiple angles to give the forests a must more realistic look.

L:
Animation
Speed

This is the speed of the animation in ticks. As you can see each sprite can have a different animation
speed, which is the amount of time it takes to switch from one frame cell to the next. Ticks are
defined as 60 ticks per second. So if you wanted the animation to take place once every second, you
would put in 60. This is a float, meaning that it can have decimal places in the number.

M: Action This is the action or firing frame. It is only used for unit sprites that show the men firing their weapons.
We have synchronized the program to always fire when they reach this frame. There is more on this
in column M and N, as it's a little hard to understand how it all works. Remember that frames are 0
based. Meaning the top frame is frame 0, not 1. So if you have 20 frames, you have frames
numbered 0-19, there is no frame 20.

N: Above
Terrain

This is the number of game units above the terrain that the sprite will be drawn. This is not in yards or
any other standard unit of measure. For our scale, we have 32 game units per yard. So if you want to
convert it, just do the math. This is used for the VP and orders icons that float in the sky.

O: Sharp This is tells the engine how to load in the graphic. The value can be 0 or 1. Basically this determines
if the graphic is loaded in exactly as defined (sharp=1) or if the engine can smooth out the graphic
(sharp=0) and blur it a little. We use sharp for the TAKE COMMAND toolbars.

P: Shadow Our forests are dynamic, meaning that our game fills them in when the level is loaded. See the
map_name.csv file write up for more detail. When the terrain graphic is placed we can draw a
shadow for it right on the terrain. This really adds to the realistic look of the world. Without a shadow
it looks kind of dumb. The shadows for the units are drawn in the cells of animation. So if you create
a terrain sprite, you'll want to fill this in. The name BigRock is just a model from our map that is used
to draw the sprite on the ground. We don't have any others, so if you want a shadow, just fill this in
with BigRock like all of the other terrain sprites.

Q: Begin
Loop

Since it would not make sense to have the weapon firing rate dependant on the number of frames of
animation, we have defined a firing time in the weapons.csv file. Certain unit skills can modify this
time, so it's variable. In order to pull this off, we need to know what to do while we're waiting to fire the
weapon. That's where this loop comes in. This loop will tell the engine which frames to continuously
go through until it's time to fire the weapon. We use this for our infantry. They will continue to push in
the ramrod until it's time to fire. This must be defined for any firing animation, even if it's only one
frame. Also, these frames cannot depend on circling back to the first frame. For example: Our men
fire on frame 35, but loop between frames 13 and 19 while waiting to fire. The engine calculates how
long it will take to reach frame 35, then will loop between frames 13 and 19 until it's time. You could

50

not have them loop between frame 26 and frame 5 because it would require going back to frame 0
and the game won't handle that situation. For best results have the firing frame towards the end of the
frames, because it looks better while falling back and retreating. Remember that these frames are 0
based, not 1 based. The begin frame is the first frame of the loop.

R: End Loop This is the last frame of the firing loop. If it is not time to fire and this frame is reached, the next frame
will be the one mentioned in the Begin Loop.

The Textures.csv

All dds sprites must also have an entry in the textures.csv file. This allows a single texture to be
broken up into multiple files. All textures must have dimensions that are a power of 2. So in order to
use the least memory possible, it is good to break up textures into multiple files.

Column Explanation
A: Name The .dds name from column B of the sprites.csv file.
B: File The actual file name
C: Width The width of the .dds file.
D: Height The height of the .dds file.

In the following example you can see that the texture C_Haversack_Melee.dds, as referenced in the
sprites.csv file, is actually broken up into 6 different files. All of these files are square and are powers
of 2 in dimension. Note the "cont" in column A to show that the following lines are all part of the first
line.

Example:
C_Haversack_Melee.dds C_Haversack_Melee1.dds 1024 1024
cont C_Haversack_Melee2.dds 512 512
cont C_Haversack_Melee3.dds 512 512
cont C_Haversack_Melee4.dds 512 512
cont C_Haversack_Melee5.dds 256 256
cont C_Haversack_Melee6.dds 256 256

The Unitsprite.csv

The unitsprite.csv file was created to define one set of sprites that define one type of unit. Each unit
in the game requires eight sprites types: march, stand, shoot, run, charge, melee, prone, and
dead. Since not all units use all of the animations, you can just reuse a sprite type in these
instances.

Column Explanation
A: Type This is the name of this sprite set. This name will be used in other files to reference this sprite type.
B: Low Res This is the name of the alternate sprite from the unitsprites.csv file. It is used when the Minimum

Uniforms option is selected on the Options Game screen.
C: March This is the name of the sprite from the sprites.csv file that will be used while this sprite type is

marching.

51

D: Stand This is the name of the sprite from the sprites.csv file that will be used while this sprite type is
standing still.

E: Shoot This is the name of the sprite from the sprites.csv file that will be used while this sprite type is firing
their weapons.

F: Run This is the name of the sprite from the sprites.csv file that will be used while this sprite type is
running; this is also used for retreating.

G: Charge This is the name of the sprite from the sprites.csv file that will be used while this sprite type is
charging the enemy.

H: Melee This is the name of the sprite from the sprites.csv file that will be used while this sprite type is
engaged in melee combat.

I: Take Cover This is the name of the sprite from the sprites.csv file that will be used while this sprite type is taking
cover (prone).

J: Dead This is the name of the sprite from the sprites.csv file that will be used while this sprite type is dead.
This can have multiple animation frames if a dying animation is desired for this sprite set. The last
frame of animation will be used as the final dead body.

K: Dead2 This is the name of a secondary sprite from the sprites.csv file that will be used while this sprite type
is dead. Currently this is only used for the men dying around a cannon. The first dead sprite is the
actual cannon and the 2nd dead sprite is the men of the crew.

The Unitcommon.csv

The unitcommon.csv was created in order to better organize often reused properties of units from
the units.csv file. Basically we define a unit class. In the units.csv file we assign a class to every
unit and then that unit picks up all of the properties from the unitcommon class. It's an organizational
tool and prevents mistakes.

Column Explanation
A: Class This is the name of the class. It is used in the units.csv file. Each unit in the game has an

assigned class.
B: Type This determines what type of unit this is referring to. The following values are valid:

0 = Infantry
1 = Cavalry
2 = Artillery
3 = Ordnance
4 = Courier

Note that we only have one type of division, corps, and army commander. They must be set to
infantry. You cannot create an artillery division commander. You can create an artillery, cavalry,
or infantry brigade commander.

C: Alt Class This is used for limbered artillery and dismounted cavalry, as well as when guns are captured.
The internals of the program know to switch the class to the alt class when certain functions are
called or certain events occur. This is just another class name. When the class switch is called
for either by the AI or the player’s interaction with the toolbar, the referenced unit switches to
using the alt class.

D: Capt Class This is the class that is used when an artillery unit is captured. This is used for artillery units
only.

E: March Speed This is the number of yards per second that this unit can march. This can be a float value.
F: Run Speed This is the number of yards per second that this unit can run. This can be a float value.
G-L: Uniform 1-6 This are the sprite set names from unitsprite.csv. You can have up to six different uniforms in

the same unit. The program will randomly assign these. You must fill these cells in sequentially.
You cannot have a name in just cells 1 and 3. You must fill in cell 2 as well.

M: march sound This is a looping sound from gamesounds.csv. It is played while this unit is marching.
N: stand sound This is a looping sound from gamesounds.csv. It is played while this unit is standing still.

52

O: shoot sound This is a looping sound from gamesounds.csv. It is played while this unit is firing their
weapons.

P: run sound This is a looping sound from gamesounds.csv. It is played while this unit is running.
Q: charge sound This is a looping sound from gamesounds.csv. It is played while this unit is charging the

enemy.
R: melee sound This is a looping sound from gamesounds.csv. It is played while this unit is engaged in melee

combat.
S: take cover
sound

This is a looping sound from gamesounds.csv. It is played while this unit is taking cover
(prone).

T: flag bearer This is the sprite set for the flag bearer from unitsprite.csv. This 1 sprite in a formation can
have its own sprite set. Currently we don't really use this feature because we couldn't get the
flag staff to line up with the flag. You can put whatever you want here; you can make this a
regimental commander sprite if you wish.

U: toolbar This is the toolbar name from toolbar.csv. This is the toolbar that is shown when this unit is
under your control.

V: friendly
toolbar

This is the toolbar name from toolbar.csv. This is the toolbar that is shown when this unit is in
your army but not under your control.

W: enemy toolbar This is the toolbar name from toolbar.csv. This is the toolbar that is shown when you click on a
flag from the enemy army.

X: fighting
formation

This is the formation name from formation.csv that is used by the AI as the default formation to
use when fighting.

Y: march
formation

This is the formation name from formation.csv that is used by the AI as the default formation to
use when marching.

Z: Melee Hit This is the chance out of 1000 of successfully getting a kill when fighting in melee combat. This
value will be modified by the levels.csv file based on the skills and experience of the unit. So
this value should be the base for green unskilled troops. We keep this value pretty low, since
each sprite represents multiple men. If this value is too high, melee would be over instantly.

53

Mod/Add a Flag

The flag graphic has to be included in the file sprites.csv which needs to be in the data files
directory. Then the flag can be assigned to a specific unit in units.csv or an Open Play OB_*.csv .
It will show up in open play or in any custom scenarios you build that include that units.csv file.

Mod/Add a Weapon

The War3D game engine offers significant power for the modder to change the behavior of the
infantry and artillery weapons. Please note that changes described here will not apply to the battle
scenarios shipped with the game that appear on the ‘Battles’ screen. The behavior for those is hard
coded in the *.mmg files. This means that you cannot mod the game and have the changes affect the
scores that will appear on your ‘Service Record’. If you want to try and make “Guns of the South”, it
will have to be as a custom scenario.

To understand how to mod a weapon, it is essential to understand the structure of three files:
Weapons.csv, artyammo.csv, and the artillery section of tables.csv. Read through these sections
and then the discussion of how to mod weapons in TAKE COMMAND will resume after the section
on tables.csv.

The Weapons.csv

The weapons.csv file describes the firing abilities of every ranged weapon in the game. Weapons
such as artillery have extra parameters that are described below. There is no limit to the amount of
weapons that you can create.

The weapons.csv file is a little obscure, so please read this carefully to understand how it all works.

Infantry weapons: There are seven base ranges for infantry weapons that are used by the game.
They are described in columns C through I. Each weapon will set its own particular yardage for each
range. The first row of the csv is just header text that is not read by the program. The second row is
the most important row because it sets the percent chance of a hit for each of the seven ranges. This
chance of a hit is set in row 2, columns C - I. In each of these boxes there is a number that describes
the chance of a hit out of 1000. This is the same for every weapon in the file. This is the way that the
weapons differentiate themselves is by setting the yardage for each range.

For example: The first range is Min Range. We have set this to have a 400 out of 1000 chance of a
hit, or 40%. This is our highest percent chance because this is the closest that you will get. Our rifles
are different; many of them have this range set at 30 yards. That means for these rifles to have the
same 40% chance of a hit, they would have to be at least within 30 yards of the target. Although the
40% chance of a hit does not change, the range to get that 40% chance can does change for every
ranged weapon.

54

These ranges also affect how the AI works. The AI will not tell their men to move within 50 yards of
the enemy, that's not how it thinks. The AI will tell their men to move to Medium range (for example).
So depending on the rifles that their men have, their distance to the enemy will vary.

NOTE: The base chance of a hit, the base chance of a misfire, and the firing times are also
modified by a number of factors. For the chance of a hit, these are: weather, unit quality,
fatigue, and accuracy. The weather is set by the scenario designer; the initial values for the
other three parameters are set in units.csv. The misfire value can also be affected by:
weather, unit quality, fatigue, and loading rating. Firing time is affected only by unit quality.
The tables that show how the modifying parameters change the base values are found in
levels.csv.

Column Explanation
A: Name The name of this ranged weapon. This name is used in other csv files to reference this

weapon.
B: Name2 This is an extra line of text to describe the weapon. This field is used for display only, and is

not referenced anywhere except by the variable that displays it.
C: Min Range The number of yards away from the enemy for this weapon to be considered at minimum

range. The minimum range value will be used for 0 - Min Range.
D: Optimal Range The number of yards away from the enemy for this weapon to be considered at optimal range.

The optimal range value will be used for Min Range - Optimal Range.
E: Medium The number of yards away from the enemy for this weapon to be considered at medium range.

The medium range value will be used for Optimal - Medium Range.
F: Typical The number of yards away from the enemy for this weapon to be considered at typical range.

The typical range value will be used for Medium - Typical Range.
G: Long The number of yards away from the enemy for this weapon to be considered at Long range.

The Long range value will be used for Typical - Long Range.
H: Longest The number of yards away from the enemy for this weapon to be considered at Longest range.

The Longest range value will be used for Long - Longest Range.
I: Max Range The number of yards away from the enemy for this weapon to be considered at maximum

range. The maximum range value will be used for Longest - Max Range. This also specifies
the maximum range in which this type of weapon can be fired. The men will not fire if the
enemy target is farther away than this range.

J: Misfires This column is probably labeled incorrectly. It's really the chance you have of loading your rifle
correctly. It's out of 1000 like the chance of a hit. This is also modified by the unit’s levels in
levels.csv. So if this number is 200, then you have a 20% chance of even getting the shot off.

K: Firing Time This is the number of seconds that it takes between firing your weapon and getting it reloaded.
Obviously the lower time here the better. This, as well as misfires and shooting, should be set
for the lowest level of men, for the green soldiers. Because unit experience and skills will bring
this number down.

L-O: Arty Ammo
Type Quantities

Columns from L through T are for artillery only. These next four columns need to be in the
same exact order as the ammo types listed in columns P-S. They are matched 1-1 by the
program when the level is loaded. These four numbers need to add up to exactly 100.
Basically when an artillery unit is loaded, they are given a total number of rounds from the
units.csv file. Since arty has 4 types of ammo, we use these numbers as percentages to divide
up the ammo into the different types. It also effectively allows certain artillery types to not
receive certain ammo types. So you can use 0 as a valid value if that piece of artillery would
never shoot that type of ammo. If these numbers add up to more or less than 100, the results
are undetermined, but may result in a rapid visit to your desktop.

P-S: Arty Ammo
Types

These entries show which ammo type from the file artyammo.csv is used for this artillery type.
The value in each cell must be an exact match for an entry in column A of artyammo.csv. In
some cases the ammo type differs whether the battery is Union or Confederate. This is
because the CS had great difficulty in manufacturing reliable fuses for shrapnel and shell.

T: Accuracy Table
Number

The value in column T indicates which accuracy table found in Tables.csv should be used for
this artillery weapon type. A value of ‘1’ in column T shows that the table ‘Arty1’ in Tables.csv
should be used in the accuracy calculations for this type of artillery.

55

The Artyammo.csv

The artyammo.csv file has one row for each artillery ammo type. We use this file to further modify
the effects of the different artillery ammo types. The number of ammo types is not hardcoded, you
could add new ammo types to this file.

Column Explanation
A: Name This is the name of this artillery ammo type. The name here is used in Weapons.csv to

determine the ammo performance characteristics.
B: Particle Effect This is the name of the graphics effect from column A of the effects.csv file. This effect will

be played at the point of impact, or in the air as dictated.
C: Sprite Graphic This is the name of the explosion graphic from the sprites.csv file that will be played at the

point of impact. This graphic will slowly be faded out.
D: Smoke This determines whether or not to play the smoke effect at the point of impact.
E: Display on Ground This determines whether or not to display a missed artillery explosion on the ground, if not

on the ground it will be played in the air.
F: Min Range This is the minimum range in yards that this ammo type would be used.
G: Max Range This is the maximum range in yards that this ammo type can be used. This also represents

the maximum theoretical range for the gun type.
H: Probability of kill
with a hit

If the accuracy calculations show that the ammo type passed through the target area, this
value shows the probability that casualties resulted. The values range from 0 to 1, with 1
representing a 100% chance of casualties. For solid shot, this value is always 1, the values
for shell and shrapnel represent the probability that the fuse detonates the round at the right
time to cause casualties.

I: Max Kill This is the maximum number of men that would be killed by 1 successful hit by this ammo
type

J: Miss Morale
decrease

This value is the amount that morale is decreased by a miss where no casualties result.
The minimum value is 1 and the maximum value (for big Naval weapons) is 3.

K: Canister angle This is the dispersion angle of the shot from a canister round after leaving the barrel of the
gun. The values are in degrees and should be between 0.5 and 0.9 for all single canister
rounds. Double canister is not implemented as a separate ammo type in TAKE
COMMAND, but may be added in a future game. Double canister is mimicked by simply
doubling the casualty value when the target is closer than 75 yards. Although there are
artyammo.csv entries for double canister, they are not used and that it's hardcoded for 75
yards.

L: Canister shot # This is the actual number of shot in the canister round used by this weapon type. It is used
in the calculations to determine the number of hits by a canister round.

M: Sound File This is the name of the sound from the gamesounds.csv file that is played when this
ammo type impacts.

The Tables.csv: Artillery Section

This part of the tables are used to describe the accuracy of the various types of artillery used in
TAKE COMMAND. This is new for TAKE COMMAND and is intended to bring a greater historical
accuracy to the differing performances of artillery depending on a variety of factors. The new artillery
engine initially calculates the group diameter at the actual range to target. This is based on the
values in the Arty# table section in tables.csv. These values were derived from actual scores in
cannon target matches conducted by the North-South Skirmish Association (http://www.n-ssa.org/).
There are currently five tables which cover rifled guns (e.g. 3 inch Ordinance Rifle), long smoothbores
(e.g. 12 lb Napoleon, short smoothbores (e.g. 12 lb howitzer), the Wiard 6 and 12 lb guns, and the

56

http://www.n-ssa.org/

Whitworth gun. The accuracy data for the Wiard and Whitworth were estimated as no actual
performance data has been yet located. The table data are arranged in this way:

Column in
tables.csv

Explanation

A Unit Quality Rating: These exact terms must be used as they match values used elsewhere in
the game.

B Observed or estimated group size for 10 rounds fired at 100 yards. The spread in values
matches that seen from top to bottom in actual cannon target matches.

C Combat Stress Factor Adjustment. Set at 2 but can be changed. This is a global multiplier to
represent the factor that performance in combat is always degraded from that on the target
range.

D Adjusted Group Diameter: This is simply the value in column B multiplied by the value in column
C. This is the only value actually used by the artillery engine to calculate the results of that
round being fired.

Now that you have some familiarity with the tables, we will discuss how to mod the game to add
additional weapons. We will start with infantry weapons and then deal with the more complex case of
artillery weapons.

The mechanics of adding a new infantry weapon are actually relatively simple. If you are adding a
weapon for a scenario, the copy Weapons.csv from the SDK folder into the data files folder of your
custom scenario. If you want the change to appear in open play, then the Weapons.csv file should
be copied into the data files directory of the main game. Let us assume that you have discovered
that your favorite unit, the 6th Arkansas Volunteer Infantry (CS), was armed with the Model 1819 Hall
breech loading musket. In the interest of historical accuracy, you may want this to be in the OOB for
a future game.

In the data files directory, open the file Weapons.csv in your favorite spreadsheet program. The
infantry weapons are sorted generally in decreasing caliber. Insert a row at row 26, between the
entries for 1854 Austrian Lorenz and Sharps Rifle. Column A holds the weapon name, that will be
used in units.csv; enter US M1810 Hall Flintlock here. For column B, copy up the value of .52 cal
Breechloader from the row below. In columns C-K, the values that reflect the actual performance of
this weapon in the hands of the units that carried it. Please note that this is not the bench-rest
accuracy of the weapon, but the actual performance in the hands of the infantry that carried it. Since
rifle practice was quite rare in most units, the actual performance was much worse than the weapons
were usually capable of. The values in each cell are the range at which the ‘Base % Chance of HIT’
matches that shown in row 2. The data here are simply a best estimate as quantitative data are
nonexistent. My choice was to copy the values from the Dimick Rifle (row 14) for columns C-I as
these are intermediate between the smoothbores and the mid-century rifled muskets. For the misfire
value (column J) the 175 value for the US M1816 Flintlock was used, as was the firing time of 40
(column K). This is all that is needed to make the weapon available in the game.

The next step is to assign the weapon to a specific unit. This is done in the units.csv file. Open up
the units.csv file for the scenario where you wish the weapon to appear. Move to column H
(Weapon) and scroll down to the specific regiment that you want to have this weapon, in our example,
the 6th Arkansas. Copy the value from column A of weapons.csv and paste in column H of units.csv
and save the file. The 6th AR will now appear in the game carrying the Hall flintlock.

Modding artillery is more complex, due to the need to account for the gun accuracy, crew
competence, type of round, and the very different performance of fuses between CS and US
suppliers.

57

Mod the Game Interface

One of the strengths of the TAKE COMMAND system is that the entire user interface can be changed
by the determined modder. The game allows new buttons to be added or existing ones rearranged—
or deleted. The graphics used for the buttons or for the toolbar itself can be changed as well.

The Toolbar.csv

The toolbar.csv file defines all of the toolbars in the game. This file describes all graphical
components of toolbars; the text for the toolbars is defined in the tooltext.csv file. These files use
the same exact names to refer to the different toolbars. The unitcommon.csv file assigns the
toolbars to the different commanders and units in the game. There is no limit to the number of
toolbars that can be defined and used in the game.

There are three types of tool bars. The first type is used for commanders and units that will be under
the player’s command (i.e. a subordinate). The second type is used for commanders and units
belonging to the same army (side) as the player–but not part of the player’s command (i.e. peer and
superior commanders and units). The third type is the toolbar that is shown for the enemy.
Depending on your design, you could possibly combine the friendly and enemy toolbars, but that
choice is up to you, we do not.

Toolbars are drawn on the game screen in descending order during play. This means that you must
list the background of a tool bar first on the toolbar.csv. If you place the buttons and then place the
background, the buttons will be hidden because they are behind the tool bar background. The tool
bar graphics are drawn in the same exact order as they are presented in the file.

Toolbars support inheritance. This means that you can create a base class toolbar with common
functions, and have other toolbars INHERIT attributes from it. This really eases the process when
making global changes and keeps the graphics/toolbar folder files smaller and easier to manage.

Each button supports 4 states: Normal - the normal button with no changes, Highlighted - shown
when the highlight condition is met, gray - we do not currently use this state, Active - shown when the
mouse cursor is over the button.

Column Explanation
A: Toolbar This is the name of the toolbar. This same exact name is used in tooltext.csv and

unitcommon.csv. Since there can be a lot of toolbars, we suggest using a naming convention that
will be easily understood, because you can become lost.

B: Sprite This is either the name of the sprite from the sprites.csv file or the word INHERIT. If you use the
word INHERIT here, the next column must contain the name of the toolbar from which you want to
INERHIT from. Meaning that the inherited toolbar will be completely included for this toolbar.

C: loc x
(across)

If you are using INHERIT, this column will contain the name of the toolbar from which you wish to
INHERIT. Otherwise it contains the 2D x coordinate of the upper left corner of where you want to
draw the sprite. Remember that these coordinates are 2D with the screen being a 1024x768 area.

D: loc y
(down)

This is the 2D y coordinate of the upper left corner of where you want to draw the sprite.

E: Button
Sound

This contains the name of a sound from the gamesounds.csv file. This is only used when this row
references a button with an associated function. The default sound is click, unless a different one is
specified here. This sound is played when the user presses and releases the button.

F: Normal
(across)

This is the 0 based index of the graphic from sprite referenced, just start at 0 and count across until
you reach the column of the sprite that you want. We group the button sprites together in one file for

58

ease of use. This specifies the index normal state of the graphic. This state will be shown if the
graphic does not qualify for any of the other states explained below. Leave this as 0 if there is only 1
graphic in the sprite.

G: Normal
(down)

This is the 0 based index of the graphic from sprite referenced, just start at 0 and count down until
you reach the row of the sprite that you want. We group the button sprites together in one file for
ease of use. This specifies the index normal state of the graphic. This state will be shown if the
graphic does not qualify for any of the other states explained below. Leave this as 0 if there is only 1
graphic in the sprite.

H: Highlighted
(across)

Same as Normal (across), but specifies the highlighted state.

I: Highlighted
(down)

Same as Normal (down), but specifies the highlighted state.

J: Gray
(across)

Same as Normal (across), but specifies the grayed out state.

K: Gray
(down)

Same as Normal (down), but specifies the grayed out state.

L: Active
(across)

Same as Normal (across), but specifies the active state. The active state is used when the cursor is
over the button.

M: Active
(down)

Same as Normal (down), but specifies the active state. The active state is used when the cursor is
over the button.

N: mod left If you want to have a smaller active area for particular buttons, you can use the mod parameters.
We currently only use this for the wheeling buttons. Basically if you put a number in here it is added
to the current side of the rectangle in order to obtain a hit area. For example: in our wheel right
button, we put a value of 19 in here. This means that 19 is added to the left side of the rectangle of
this button. So this effectively creates two buttons out of one, but specifying a hit area on only the
right side of the button.

O: mod top This works the same as mod left, but adds the value to the top of the rectangle; we do not currently
use this option in any of our buttons.

P: mod right This works the same as the mod left, but adds the value to the right side of the triangle. For
example: in our wheel left button, we put a value of -19 in here. This means that -19 is added to the
right side of the rectangle of this button. So this effectively creates two buttons out of one, but
specifying a hit area on only the left side of the button.

Q: mod
bottom

This works the same as mod left, but adds the value to the bottom of the rectangle; we do not
currently use this option in any of our buttons.

R: func This is the function for the button. If this field is blank, then the program assumes that this is not a
button. Please see the command reference for a list of valid function names.

S: text This is the tooltip text. This will appear whenever the user has the cursor over this graphic. You
can have a tooltip for any graphic; it does not have to be a button.

T: Special Currently the special field is only used for progress bars. We show them in many of our screens. On
our toolbars, we use them for the morale, strength, and fatigue backgrounds. A sample progress bar
looks like this:

progbar:#moralemin-#moralecur-#moralemax

This defines a progress bar. The sprite for a progress bar is assumed to be the proper size for when
the progress bar is fully extended. The program will shrink the progress bar in order to show values
that are smaller. Our progress bars currently only work left to right, we do not support up and down
progress bars. Notice the three values used. These are variables that can be found in the variable
reference document. All of the variables are preceded by the # sign. This means that the variable
will be read and used as a number. The first variable is the value for the left side of the progress
bar, the last variable is the value for the right side of the progress bar. The middle variable is the
current value. The program will automatically calculate the length of the progress bar based on
these three values. Don't forget to put the - between the values and make sure that there are no
spaces. The code that reads these is not very robust.

U: Show
Condition

The show condition column is what it says; it will determine whether or not to draw this graphic.
Please see the variable reference document on how to create condition functions. This can be
used for any graphic; it does not have to be a button.

V: Highlight
Condition

This works the same as the Show Condition column, except that this determines whether or not to
show the button in the highlighted state.

59

The Tooltext.csv

The tooltext.csv file defines all of the text that is written on the toolbars.

NOTE: Rather than writing exactly the same definitions for multiple toolbars, this file and
the toolbar.csv file support inheritance. In addition to specifying specific information for a
toolbar, you can say that a toolbar inherits from another, meaning that it will get all of the
same information than another toolbar has.

Column Explanation
A: Toolbar This is the name of the toolbar that this text is displayed on. The toolbar name is used in toolbar.csv

and unitcommon.csv. These names much match exactly to get the toolbars correctly displayed. If
the name all is here, the text will be applied to all toolbars.

B: Font The font names are from the graphics/fonts folder. These files are created by engine specific tools,
so fonts cannot be created by modders. The font names come from the fonts.csv file where
modders can add their own fonts.

C:
Place(C/L/R)

This describes the placement of the text. C means that the text will be centered on the coordinates.
L means that the text will be written to the left of the coordinates, and R means that that text will be
written to the right of the coordinates. If this is an inheritance row, then the name of the toolbar from
which you want to inherit should be placed here.

D: Scale This capability is no longer supported.
E: Color R The color of the font is describes in RGB format. This is the R or red value of the color.
F: Color G The color of the font is describes in RGB format. This is the G or green value of the color.
G: Color B The color of the font is describes in RGB format. This is the B or blue value of the color.
H: X Coord This is the X coordinate is which to draw the text based on the placement value. These values are

based on our default resolution of 1024x768. These are only 2D values.
I: Y Coord This is the Y coordinate is which to draw the text based on the placement value. These values are

based on our default resolution of 1024x768. These are only 2D values.
J: Variable
Names

This is the text that will be written in this position. You can put a game variable here or just write
text. All variables are preceded by a $ (for string) or # (for number). If neither of these symbols is
found, the game will assume that it's just straight text and print the exact text at the coordinates. You
can find a list of all variable in the variables reference section. Note that even though the variable
may be displaying a number, use the $ symbol because to display something it must be a string.
The # symbol is only used in calculations and would not make sense in this file.

60

Mod a Map

You can’t build a new map in Take Command but you can modify certain aspects of existing ones.
This section explains how to do it.

The Map Layout

The maps in Take Command are actually defined by a set of four map files. As an example, the 2nd
Manassas 2ndM_28th map set consists of the following files:

2ndM_28th.lsl The .lsl map file is used by our 3D engine. This file cannot be edited at this time.

2ndM_28th.csv
The .csv map file contains all of the information about the terrain. It defines the forests,
movement speeds, defensive bonuses, etc. This file is covered in more detail in the
map_name.csv section.

2ndM_28th.tga The .tga map file is the grayscale of the map. This file is used to define line of sight areas. All
grayscale values in this map are defined in the csv map file described above.

2ndM_28th_MM.dds
The MM.dds file (or mini-map file) is used for the in-game strategic mini-map. This is a great file
to print off and use to devise your plans for any particular scenario. It contains information that is
useful for gaining a better understanding the area of operations.

NOTE: If you open the tga map file with an image editing program, you will notice that
North is not up. These tga map files are rotated by the game engine when loaded.

NOTE: The .lsl file cannot be modded. The .csv file can be edited in the same way that
the other .csv files are edited, using a spreadsheet program. The .tga and .dds files must
be edited using a higher end graphics editing program such as PhotoShop.

The Map_Name.csv

Each map has its own csv file that defines the map. The .csv files for the maps are in the
\SDK\maps directory. Just like all other csv files, this can be overridden. You just create a maps
directory under you scenario folder and place the map_name.csv file there. You replace
'map_name' with the name of the map.

The map csv file is based on the grayscale map (.tga) that comes with every map. The grayscale
map is just a bit map with a value between 0-255 for each pixel. The maps are 2048x2048 pixels.
The map designer creates the grayscale and then takes all of the values that they used and puts
them in the map csv file to define them.

Since you can easily modify the grayscale and the csv files, you can redefine the maps that shipped
with the game. You can move forests, although the terrain image will not move, you can redefine
defensive bonuses and movement speeds across different terrain types. You can rename terrain.
This does not give the freedom of a map editor, but it's a start.

61

The map_name.csv file is broken into three parts. The first part is the map definition section. This
basically defines all of the colors used in the grayscale. The second part is for defining the ambient
sounds. To do an ambient sound, we just place a terrain sprite at a specific location on the map and
attach a sound file to it. Since this file is broken into two pieces, there can't be any blank rows in
either table. When the first blank row is found, the engine assumes that the next table has started.
The third part is the list of possible objective sites. This is used by the game engine to select
objectives for an Open Play Scenario.

Terrain Table Brush

Column Explanation
A: Terrain This is the name that will show up in the toolbar when a unit is on this grayscale value. It will be

filled in the $terrain variable.
B: Grayscale This is the value between 0-255 that this row pertains to.
C: Move Rate This value is added to the formation movement rate modifier and then multiplied by the base

movement rate of the unit to provide their current in game movement rate.
D: Density This defines how to fill in this grayscale value with terrain sprites. All of our terrain features are filled

in dynamically during level load. The lower this number is, the denser the foliage will be filled in.
The higher this number is, the lower the foliage density will be. Think of this as a random number.
Every time a grayscale of this color is found, the computer will pick a number between 1 and this
number on how many pixels to skip before it places another terrain sprite.

E: Visibility This is the distance in yards that you can see through this type of terrain. For example, if woods
have a visibility value of 40, then a unit can see 40 yards into the woods. Any units more than 40
yards away would not be visible.

F: Def Bonus This is the defensive bonus that this terrain gives to units on this terrain type. If the flag bearer is on
this terrain, then the entire unit is defined as being on that terrain. This is because it would be crazy
to calculate separately for every man. It would just use up too much CPU time. The defensive
bonus is a random number between 1 and 100. If that random number is more than this def bonus
number, a hit is made. If it is equal to or less than, then the target is missed. So the greater the
number here, the higher the defensive bonus. A value of 0 is no bonus.

G: Fatigue Every so many ticks (defined in tables.csv), a fatigue check is made. When that check is made, if
the unit is marching, they will lose this many fatigue points. The point system is defined in
levels.csv. If the unit is running, the fatigue penalty is taken from tables.csv. These are negative
numbers and are added to the fatigue value. If you want a unit to get rested while marching over
certain terrain, you could put a positive number in here.

H: Can't Halt This defines those terrain types that units are not allowed to stop on. A value of 1 means that units
cannot stop on this terrain. We use this for rivers and streams. A value of 0 means that stopping is
allowed.

I-N:Sprite1-6 If the density value is filled in, then these are the types of sprites that the level loader will use to fill in
the terrain. You can have up to six different types to add some variety. These names come from the
sprites.csv file.

O: Draw
Distance

This value is in yards and defines how close the camera has to be to this location to draw this sprite.
If you leave this blank the engine will handle this for you. I don't believe we use this in any of our csv
files, but the code is still there if you wanted to use it.

P: Make
Transparent

This is a flag to tell the engine to make this terrain type transparent as you get within a specified
distance. This is currently used only for trees in forest areas.

Terrain Table Sounds

Column Explanation
A: loc X This is the x coordinate of the sprite location.
B: loc Y This is the y coordinate of the sprite location
C: dir X This is the x value of the direction unit vector.
D: dir Y This is the y value of the direction unit vector.
E: Sprite This is the sprite name from the sprites.csv file.

62

F: Sound
File

This is the terrain sound to play at this sprite location. This is how we do the ambient terrain sounds.
This sound will be constantly played at this location. This sound is from the gamesounds.csv file.

G: Terrain This column is used for reference only and is not read in by the game.

Terrain Table Objectives

This table is a list of objectives and their locations. This list is used to determine VP Sites (objectives)
in Open Play scenarios. When a map is selected for Open Play, the game engine will randomly
determine the objective sites to be used in that scenario. Try to place these objectives at crossroads
and in open fields, but never in the woods.

Column Explanation
A: ID Names This is the name that will be displayed for this objective
B: X This is the x coordinate of the objective site.
C: Z This is the z coordinate of the objective site.

The Gamesounds.csv

All sounds used in the game must be in wav format and be located in the \Sounds directory. All
sounds that are used in the game must be predefined in the gamesounds.csv file and then
referenced in the other files by the name. The gamesounds.csv file defines those sounds that are
used in game. The mainsounds.csv file defines those sounds that are used in the pre-game menus.

NOTE: There must be one sound with the name of click. This is the default sound for
button clicks. This sound can be over ridden in the appropriate file, but this default must
exist in case there is no specific sound defined for a particular button.

Column Explanation
A: Name The name of the sound. This name is used in all of the other csv files that need access to the sound.
B: File This is the name of the wav file that must exist in the Sounds folder. This will attach the name to this

file.
C: Min
Dist

This is the minimum distance in yards away from the sound that the max volume of the sound will be
heard. The sound is played at the highest volume at the minimum distance all the way to the actual
location.

D: Max
Dist

This is the maximum distance away from the location of the sound that you will hear the sound. The
sound is lowered in volume from the min to max dist.

0 - Min Dist yards : highest volume
Min Dist - Max Dist yards: sound is gradually lowered to 0.
Greater than Max Dist yards : no sound is heard

E: Loop This is a 0 or a 1 defining whether the sound loops or not. Looping sounds are used for all ambient
sounds and most state sounds (Marching, Standing, Shooting). Non-looping sounds are used for the
button clicks and explosions.

F: Vol This is the volume to play the sound. The volume is defined as a number between -10000 and 0. With 0
being the highest possible volume of the sound and -10000 being absolutely silent. No sounds are
amplified; a value of 0 just plays at the normal volume of the wav file.

63

Modding the Take Command Combat Model

A model is an abstraction of a thing—and the model is static. A combat model is an abstract
representation of combat—in a static form. In the case of Take Command, this model happens to be
Civil War combat from the perspective of a commander. The central focus of this model is on the
command and control aspects of Civil War combat at the division level and higher. As such, the
granularity of things gets “less focused” as you move from this center. All of it by definition is an
abstraction, and there is more abstraction as you move away from the central focus.

The various .csv files discussed previously in this guide—and those that follow—form the essence of
the Take Command combat model. Though there are sub-models of the activities of regiments and
brigades in Take Command, they are optimized to support the central focus—the trials, tribulations,
and challenges of a Commander at division level command and above.

A simulation is the exercising of a model over time—that’s where the War3D engine comes in to play.
Working hand in hand with the Take Command combat model, it is through the War3D engine that
we are able to see the effects of the interactions between processes and variables within the combat
model over time. (You can now go and impress your friends with this newly found information…or
just tell them, “Hey—it’s a really cool game! And you can change stuff in it if you want…know what I
mean?”)

This section explains the remaining parts of the Take Command Combat Model that don’t fit so
nicely into the previous sections.

The Levels.csv

I'm going to approach this file a little differently because it is very different from other files. The main
idea behind this file was to allow the modder to add their own types of attributes to the fighting men
without having to change the code. We accomplished this to a lesser degree. You can add new rows

64

representing new attributes, and you can then add new columns to the units.csv file to specify values
for those new rows. So there really is no limit on how many attributes you can add to the fighting
men. The limit is how they affect the game.

The following table defines the columns across the top of the file. These are the ways that you can
affect the game in this file. Each column has a specific purpose and must exist. You cannot add to
or subtract from the columns. When figuring out a column, you must find every attribute that affects
that column, then find the specific unit's level in those attributes, then add up the values of that
column to get your total.

The morale attribute (row 99) is the last hard coded row attribute. After that the order of attributes
and number of attributes does not matter. To see what an attribute affects, just look across the rows
and see which columns have values. You cannot add attributes to commanders; they are stuck with
the first attributes listed (Initiative - Experience). The fighting men start with experience and continue
to the end of the list. Note that commanders and troops share the experience. If you look at our
units.csv files you will see this reflected in which columns are filled in to the right.

Column Explanation
Attribute Definition
A: Attribute Name This is the name that is used to describe this attribute. Each attribute starts with a name

and then the levels of the attribute.

B: Points These are the points that are associated with each attribute level. Although they are really
not used in the game at this point, it is still very important for them to be there. Certain
aspects of the game expect them there.

C: Label This is the text name of each level of the attribute.

Gameplay Columns - each of the following columns is a hard coded part of the game play

D: Firing (1000 pts) The values in this column are added to a total accuracy value for the fighting unit. The
closer the value is to 1000, the better the accuracy is for the unit. The accuracy is the
chance to hit a target with a properly loaded weapon.

E: Reload (1000 pts) -
incorrectly called
misfires in most files

The values in this column are added to a total reload skill value for the fighting unit. The
closer the value is to 1000, the better chance that unit has of properly loading their
weapon. A low value here would result in misfires or simply the inability to fire the
weapon.

F: Melee (1000 pts) The values in this column are added to a total melee value for the fighting unit. The closer
the value is to 1000, the better chance this unit has to make a kill while engaged in melee
combat.

G: Commander Radius
Percentage

This is the percentage that is multiplied by the base commander radius for the command
level. All of the values are totaled, then the result is used as a percentage to multiple
against the base:

10 yds - Brig
25 yds – Div
50 yds - Corps
65 yds – Army

So the higher this total, the larger the command radius would be for this commander.
Therefore his morale bonus would affect more men.

H: Commander Morale
Bonus

The values in this column are added to a total morale bonus value for the commander.
This total is the number of points (not levels) of morale that will be added to fighting units
that are within this commander's radius.

I: Rally Time The values in this column are added to a total value that represents a number of seconds
which is how often a commander gives out his rally points. The lower this total, the more
effective the commander in rallying troops.

J: Rally Points The values in this column are added to a total morale points value. Every time the rally
time comes up this total is added to the morale of all troops within this commander's

65

morale radius. The troops must be standing still and out of range of any enemy for this
bonus to be added. There is also a cap as to how far any commander can rally troops.

K: Wheeling Locked The values in this column are added to a total distance in yards. If the enemy is within this
distance to the troops, than the troops are less likely to wheel. Less experienced troops
would have a larger distance because they would not be able to wheel while the enemy is
close.

L: Commander Stance
Modifiers

The total of these values represent how commanders would interpret orders. We tend to
have out low numerical orders being more cautious while our higher numbers are more
aggressive. So by modifying these values you can increase/decrease the aggressiveness
of certain personality types.

M: Commander Support
Distance

This is how close to the lines the commander will actually get. Certain commander's may
get closer and have a higher chance of getting killed, but also have a higher chance of
constantly giving out their morale bonus. Other commander's my want to stay back. If this
total is negative, it is added onto the commander's radius, if it is positive it represents the
exact number of yards behind the men that the commander will stand.

N: Units Run or walk for
Ammo

The values in this column are added up and if the total is greater than 0, they run,
otherwise they walk.

O: Commander's Run
or Walk

The values in this column are added up and if the total is greater than 0, they run,
otherwise they walk. This applies when a commander is trying to rally their men.

P: Ammo Taken From
Dead

This total represents the amount of bullets that can be taken from the dead within their
own units.

Q: Max Ammo Per Man
From Ammo Wagon

This is the maximum amount of ammo that the ammo wagon will give to one man within a
fighting unit. Lower this value to conserve the ammo.

R: Unit Morale Bonus
Radius

The values in this column are added to a total radius in yards. This represents the radius
in which this unit will give out its own morale bonus.

S: Choose VP Bonuses This should only be set in one attribute as this cannot total correctly. This represents the
AI preference when choosing VP sites to conquer:

1 = morale
2 = fatigue
4 = ammo

This value works like a bit field in that you can just add the numbers to use multiple types.
So if you want certain commanders to go after morale and ammo, you could put in a 5.

T: Max Morale Modifier The cap on morale is determined by different means. It has to do with your commander
and the number of men that you have left compared to what you started with. This total
represents a little bonus that will up the cap. The cap being the highest morale that any
commander can rally you to. So if you like your commander, he can up your morale a little
higher.

U: Firing Time The values in this column are totaled and then added to the base firing time of the weapon
that the fighting unit is using.

V: First Aid In some small way this affects the OOB game screens that show your total casualties.
This will determine how many dead vs. wounded. This is not really effective in this game,
but in future games you'll be able to get some of those wounded back on the battle field.

W: Limber Time The values in this column are totaled and then added to the base limber time of the
weapon that the fighting unit is using.

X: Cover Stand Time The values in this column modify how long it takes a regiment to get back to their feet from
the take cover (prone) position. As you can see, this timing is very important when being
approached by a valid enemy target.

The Tables.csv

The Tables.csv is where we threw everything that didn't have another home. We really tried not to
hardcode any values. We didn't do too bad a job, but there are a lot of hard coded values in the
game. A lot of times when we had something new to code, we created a table in the tables.csv.

66

This prevented us from hard coding the values and also provided a place to test the game with
different sets of numbers.

The very first thing to notice of any table is the table name. That is on the first row of the table in the
first column. I will list the tables in order here, but the program loads in the tables by the table name,
not by the order.

NOTE: You can place comments between tables by not filling in the first column. This goes
for most csv files. As long as the first column remains blank, the game will skip that row.

Table: Morale .

The morale table defines how much morale is lost when one man is killed. This morale loss only
happens at certain percentages. Those percentages are listed on the left side of the table. So
morale is not lost EVERY time a man is killed. Morale is only lost when a man is killed and by that
death the total percentage of men dead (versus the starting strength) falls to be equal to one of the
percentages listed in the left column.

Where Explanation
Left most column This is the percentage dead and is figured by taking the total dead and dividing by the total

starting strength of the regiment. This column should be in ascending order. In the default
table the first value is 2. This means that when the unit has lost two percent of it men, it will
receive the first morale penalty from this table.

Top rows There are two top rows. The first row is the experience value. The second row is the
experience label. These rows are not read by the game. What is important to remember is
that if you add new experience levels to the game by modifying the levels.csv file, you must
add an equal number of columns here to reflect your change.

Value (min-max) By referencing the percent dead, then the experience level of the regiment, you will find a
value of type (min-max). This is the min and max morale penalty that will be taken. The game
will pick a random number between and including these values.

Table: Fatigue .

The fatigue table defines how, when, and how often a unit loses or gains fatigue. Fatigue figures into
numerous calculations throughout the game, and it all starts here. It is important to note that the base
fatigue of Marching does not get the fatigue penalty from this table, but from the map_name.csv file
where it takes into account the terrain that you are marching on. It is interesting to note that only
marching fatigue is affected by terrain, if the unit is not marching, their fatigue is not directly affected
by terrain. How are they affected? Using running as an for example, Units are slowed down and
therefore their already high penalties for fatigue will come into play more often.

Where Explanation
Left most column These are the unit states; you should never modify these because they cannot be changed by

the modder. They are hard coded in the game and their order is as important as their quantity.
Points These are the number of points that will be added to the fatigue value of the regiment. You

can put positive or negative numbers here, depending on how you want this activity to affect
fatigue.

Seconds Every x seconds, the fatigue will be modified.

67

Table: Fatigue Run .

The fatigue run table defines the movement penalty associated with running or charging at certain
fatigue levels. It is important to note that if you add new fatigue levels to the levels.csv file, you must
add those fatigue levels to this table.

Where Explanation
Left most column These are the fatigue levels, in the exact order and with the exact name as found in the

levels.csv file.
Effect This is the movement penalty that will be applied to the movement speed of the unit while

trying to run or charge at the left fatigue level.

Table: Unit Morale Bonus .

The Unit Morale Bonus table defines how many morale bonus points one unit gives another by being
near that unit. Units (regiments) feel much more secure by being around other units. No one wants to
be left alone. The radius, or the proximity, that one unit has to be in relation to another unit is defined
in the levels.csv file. If the units are close enough, or within the radius, then this table defines how
many bonus points they receive. The morale bonus is based on experience and the number of men.

Where Explanation
Left most column This defines the number of men in the regiment giving the bonus. Any amount up to and

including the number on the left of the row, will use this row for the bonus.
Top Rows There are two top rows. The first row is the experience value. The second row is the

experience label. These rows are not read by the game. What is important to remember is
that if you add new experience levels to the game by modifying the levels.csv file, you must
add an equal number of columns here to reflect your change.

Values These are the number of points that this unit gives as a morale bonus. Look up the number of
men on the left and the experience across the top to find the correct bonus.

Table: Grades .

The grades table defines all of the grades that can be won by a unit. The only grades that this does
not include are those won by taking objectives. When a unit causes another unit to reach the state
defined in the left column, they are awarded the points to their grade and the morale bonus. The unit
that is caused to be in that state will lose the points in the grade column. Do not change the left most
column; the order is defined in the game.

Where Explanation
Left most column This defines the different states that a unit can reach. One or more units will cause another

unit to reach this state. Do not change the order or names of this column, as the order is
defined in the game and is expected to be as presented here.

Grade These are the number of points that will be awarded to the victorious units and taken away
from the defeated unit for reaching the state defined on the left. Note that if more than one unit
causes the defeated unit to reach that state, the points will be divided among all the units that
have a kill in the defeated unit.

Morale This is the morale bonus that will be received by the victorious units. Each unit causing the
state will receive the full morale bonus.

68

Table: Retreat .

The retreat table defines the percent chance that a unit commander will get scared and order a
retreat on their own. If the unit commander orders the retreat on their own, their commander will lose
points for not watching his men closely enough. If the brigade commander calls a retreat before the
regimental commander does, they will not lose points.

Where Explanation
Left most column These are all of the morale levels from the levels.csv file. If you modify the levels.csv file and

add or take away morale levels, then you must also add or take them away from this column.
Top Rows There are two top rows. The first row shows some comments; the second row is the

experience label. These rows are not read by the game. What is important to remember is that
if you add new experience levels to the game by modifying the levels.csv file, you must add
an equal number of columns here to reflect your change.

Value These values are the percent chance out of 100 that the regimental commander will call a
retreat when that regiment FIRST reaches that morale level. There will be one check that
occurs whenever a unit changes morale levels.

Table: Fallback.

The fallback table defines the percent chance that a regimental commander will get scared and order
a fallback on their own. If the regiment commander orders the fallback on their own, their commander
will lose points for not watching his men closely enough. If the brigade commander calls a fallback
before the regimental commander does, they will not lose points.

Where Explanation
Left most column These are all of the morale levels from the levels.csv file. If you modify the levels.csv file and

add or take away morale levels, then you must also add or take them away from this column.
Top Rows There are two top rows. The first row shows some comments, the second row is the

experience label. These rows are not read by the game. What is important to remember is
that if you add new experience levels to the game by modifying the levels.csv file, you must
add an equal number of columns here to reflect your change.

Value These values are the percent chance out of 100 that the regimental commander will call a fall
back when that regiment FIRST reaches that morale level. There will be one check that
occurs whenever a unit changes morale levels.

Table: Elevation.

The elevation table defines accuracy bonuses for units that are at a higher elevation and accuracy
penalties for units that are at a lower elevation. These values are added to whatever other accuracy
bonuses or penalties they may have.

IMPORTANT NOTE: Right below the table name (Elevation) is the number of (rows-
columns). If you change either of these values, you must change this value to reflect the
correct amount; otherwise the game will not read in all of the data.

Where Explanation
Left most
column

This is the elevation difference in yards. This column is ascending so that the smallest difference is
at the top.

Top Rows Across the top is the distance the targets are away from each other in yards.
Values
(bonus-
penalty)

The values show the bonus and penalty for each elevation difference and distance combination. This
value is added to or subtracted from whatever the current accuracy value is. The higher unit will get
the bonus while the lower unit will get the penalty.

69

Table: Area Mod.

This table is used by the AI to determine where they want to attack. It is used by the Corps and Army
Commanders to evaluate the field of battle during the initial strategy planning. It is broken into
different sections for each type of evaluation and each type of commander style.

Where Explanation
Left most
column

These are the commander styles. If you add new styles to the levels.csv file, then you must also add
them here. In the base table 0 is the most cautious personality and 4 is the most daring.

Top Rows The top row lists the different types of situations that the AI will evaluate. Do not change this row at
all, as it is expected in this format by the game.

Values (min-
max)

These values represent the range of getting a random number. This random result will determine how
many subordinate units this commander will commit to the particular rows type of attack.

Table: Capture.

This table is no longer used.

Table: Artillery Accuracy .

There are five of these tables. These tables define the base accuracy of the cannon/crew
combination. The data supporting these tables comes from actual cannon target matches run by the
North-South Skirmish Association.

Where Explanation
Left most column These are the gun crew quality rating. These cannot be changed.
Column B: group size This is the size of a group of 10 rounds at 100 yards for this specific cannon type and

crew quality.
Column C: Combat Stress
Adjustment Factor

Nobody shoots as accurately in combat as they do on the target range. This factor is
multiplied by the group size to give the Adjusted Group size.

Column D: Adjusted
Group Diameter

This is column B times column C and gives the final group size. NOTE: This column is
the only one actually used, the others are to show how this number was derived.

The Formations.csv

The formations.csv is one of the most complex csv files in the game. It has many rules that must be
followed exactly.

The most important thing to remember when modifying or designing a formation is that they are real.
When marching in formation, soldiers line up on other soldiers in that formation. A soldier aligns on
the soldier to his right or the soldier to his direct front. This continues all through the formation until
you get to the soldier carrying the colors. In the large formations he's lining up on someone too.
"Dress Right"…

If you keep this in mind, creating formations can be fairly simple. Think of the formation that you
want, then place the flag bearer, then the next soldier and keep going until you've filled in all of the
slots, with each soldier lining up on another soldier lower in number than he is.

70

TAKE COMMAND formations can have a maximum of 100 sprites—the equivalent of 1,000 soldiers.
The first sprite is in slot 1. This is the flag bearer and every formation must have one flag bearer.
You then place the remaining 2-100 sprites in position. You do not have to define all 100 sprite slot
positions if the formation you are designing will never contain that many sprites. For example, our
commander formations only have two sprites, the flag bearer and the commander so there would be
no reason to define all 100 slots.

The formation.csv file is broken into two sections for each formation definition. The first section is
the first row of a formation definition. It defines the formation properties. The second section is a set
of rows that define the formation locations. There can be no blank rows within a formation definition.
The facing of a formation definition on the formations.csv is always towards the top of your monitor.

All units have formations that they can employ. These formations are defined using the
formations.csv.

Column Explanation
A: Form # This is the name of a particular formation. This name will be used in other csv files to reference

this formation. This name is used on the following csvs:

Toolbar (func)
units.csv, column O (Formation)
unitcommon.csv, column W (Fighting Formation)
unitcommon.csv, column X (March Formation)

This is not a number, but the name of the formation. It is suggested that you some sort of naming
convention because as you create more and more formations, they can get very confusing.

B: Rows This is the number of rows or lines down that will make up the formation. You can fill this in after
you have completely defined the formation by just counting the number of rows.

C: Cols This is the number of columns or rows across that make up the formation. You can fill this in after
you have completely defined the formation by just counting the number of columns.

D: Row
Distance

This is the number of yards between each row of men. So as the men stand there will be this
many yards in the front and back of each man.

E: Col Distance This is the number of yards between each column of men. So as the men stand there will be this
many yards to the left and right of each man.

F:
Subformation

This is the name, from column A of this file, of the sub-formation to use. This is used for
commander formations. For example our brigade commanders only have two people in their
formation, the flag bearer and the commander. Once a formation has been filled in with all of the
men for that unit, the game will then look to see if that unit has any subordinates. If it does, then it
will place the subordinates in the remaining formation locations, and call the sub-formation for each
of those subordinates.

G: Keep
Formation

This flag determines if this formation is used for marching or if the unit should switch to their
marching formation for marching. We use this flag to maintain skirmish formation.

H: Can Wheel This is just a 0 or a 1 determining whether or not wheeling is allowed in this formation.
I: Can Fight This is just a 0 or a 1 determining whether or not fighting is allowed while in this formation.
J: Move Rate This is one of the two parameters that affect the movement rate. This number is added to the

movement rate modifier of the terrain, from the map_name.csv file, and then this result is
multiplied by the current movement speed of the unit and then added to the movement speed of
the unit.

So make this a percentage decimal. For a 20% increase in speed while in this formation, use 0.2,
to decrease the speed by half while in this formation, use -0.5.

K: AboutFace This one is a little confusing. The formations can about face and the AI does use this functionality
to turn around quickly. Also if you click directly behind a unit, they will usually about face to the
location. If this value is 0, then the unit will not be able to about face from this formation.

If you want to support about face from this formation, this number should be the position in your
formation where you want the flag bearer to end up after the about face is completed. So after you

71

have your formation designed, take a look at where all of the numbered slots are, then think of the
formation as turned around, where would the flag bearer be? Now we don't have our columns
allow about face, but if we did, then this value would have to be 100. Meaning for a good about
face to occur, then the unit must occupy the same exact space that they did before the about face
was called. So you would want to move the flag bearer all the way down to the last slot and have
everyone else line up behind him.

L: Artillery
Formation

This is the sub formation for artillery. This works exactly like the other sub formation, but applies to
artillery. This is really only used for the division formations. Divisions are the meeting place for
each type of unit (cavalry, artillery, and infantry). The cavalry and infantry share most formations,
but the artillery does not. So if a division commander calls an entire division formation, the artillery
will use this formation instead of the other sub formation defined earlier.

M: Closest
Enemy

This column determines the number of yards that men in this formation will allow an enemy to
approach this formation. If an enemy gets closer than this value, then the unit will run a short
distance away.

After you have defined the formation above or at least filled in as many parameters as you can, it's
time to design the actual formation. This is a list of numbers from 1 to 100 placed on the grid exactly
how you would want them to look in the formation. This is a good reason to use a spreadsheet
program to edit these csv files.

1. Place your flag bearer. It's easier to work on a blank spreadsheet and place your flag bearer
somewhere where there is a lot of room all around. So type a 1 in a box and you have your first
formation consisting of 1 flag bearer.

2. Place your number 2 guy. Remember that he must be able to line up to the left, right, front, or back
of the 1. He cannot be diagonal from the 1. You may leave blanks to the left, right, and front, but not
in the back. So if 2 is behind 1, he must be directly behind 1. But if he is to the left, right, or front, he
may skip some blocks and does not have to be directly next to 1.

3. Continuing placing men until you have placed all you want, and remember—no more than 100.

4. Also remember that the numbers you place are as if there were that many sprites in the formation.
So you start with just one side of the formation and then move to the other, when there are less than
max men in the formation, it will look unbalanced. Always balance the formation as you add new
numbers.

5. We have designed many formations in this file, they all work. So use our examples to help you on
your way. Also if something that I have written is too cryptic, our example should hopefully clear it up.

6. When the game loads in the formation, it looks in a specific order to determine who to line up on for
each slot. First it looks to see if it's behind a lower number, then it looks to see if it's to the right of a
lower number, then to the left, and finally ahead. It does not look to find the lowest number that it's
around; it looks in the above order. If it cannot find a lower number, then the formation fails.

Special
Situation

Explanation

(row dist - col
dist - sprite)

Before every number in your formation design, except number 1 (flag bearer) since it would not
make sense, you can specify specific properties that affect that formation slot alone. These
additional properties will override anything else and will only affect the formation slot number that
they precede. For example, the following is the entry for slot 2 in the formation.

(10-0-0)2

It overrides the row distance and the column distance for this slot. We use this often in the larger
formations. In the division formations we want the commander close to the flag bearer, but we want

72

large gaps between the bigger brigade formations. So we set the default distance for the formation
to a large number, then we override the commander slot with a smaller distance, so he's closer to
the flag bearer.

It does not make sense to fill in both the row and column distance, since each slot only lines up on
one other slot, so you must read your design and determine which slot this slot is lining up on (using
step 6 above) and then determine if it's the row or column distance that you must modify.

row dist The row distance, ahead or behind, in yards. A value of 0 uses the default.
col dist The column distance, to the left or right, in yards. A value of 0 uses the default.
sprite Generally, you should set this number to 0. However, it is functional. Currently, the War3D game

engine uses this number as the index to the list of uniform sprites found in the unitcommon.csv. In
that file you can define up to six different sprites that will be used randomly to populate a formation.
This sprite number, if set to 1-6 will use this specific sprite set (as enumerated on the
unitcommon.csv) for this particular formation slot. Since these sprites are used randomly
throughout the formation, other slots may also use this sprite. If you want to make the use of a
sprite exclusive to a particular formation slot, then all the formation slots should be defined with a
specific uniform sprite number.

73

Miscellaneous

The following csv files deal with the graphics user interfaces, the game sound files, and other visual
effects contained in the Take Command game series.

The Mainscreens.csv

The mainscreens.csv file is hard to describe. It is best understood by just opening it up and taking a
look at what is in it. Your familiarity with playing the game will provide some clues that will help you to
understand much of what you see here.

Column Explanation
A: Type This lists the type of functionality required/desired for a particular gamescreen. The type

"NEW" starts a new screen definition. Example:

NEW Main MainScreen.dds 0 0 0 1024 768 1024 1024 $lastscreen
B: Screen This is the name of a defined mainscreen.
C: Targa This column contains either the name and file type for a graphics file or specific text entries

used on a defined mainscreen.
D: FONT-L/R/C-R-G-B name-justified-R-G-B
E: Run Game This column entry tells the game engine what to do while the called mainscreen is active.

0 = Game paused; 1= Game runs & drawn; 2= Game paused & drawn
F: X Coord This is the distance in pixels from the bottom of the screen that the top left hand corner of a

graphic or text entry will be displayed.
G: Y Coord This is the distance in pixels from the left side of the screen that the left edge of a graphic or

text entry will be displayed.
H: Width This is the width dimension of a graphic in number of pixels.
I: Height This is the height dimension of a graphic in number of pixels.
J: X Source On our .dds screens, we keep all graphics that show up on the screen in the same .dds file.

The x & y source columns are their location in that file. For every line but the new line, this is
the location of the upper left hand corner of this graphic in the mainscreen.dds file.

K: Y Source On our .dds screens, we keep all graphics that show up on the screen in the same .dds file.
The x & y source columns are their location in that file. For every line but the new line, this is
the location of the upper left hand corner of this graphic in the mainscreen.dds file.

L: Draw Condition The conditions that must exist in order for a graphic or text to be displayed/written to the
screen in question.

M: Exec Condition The execute condition is a conditional statement that allows the function of the button to
occur. If the condition fails it will not execute the function of the button.

N: Function This is the game function called when the defined button is selected by the player.
O: Depends1 The game function called depends on this additional condition.
P: Depends2 The game function called depends on this additional condition.

74

The Gamescreens.csv

The gamecreens.csv file is hard to describe and is best understood by just opening it up and taking
a look at what is inside. Your familiarity with playing the game will provide some clues that will help
you to understand much of what you see here.

Column Explanation
A: Type This lists the type of functionality required/desired for a particular gamescreen. The type

"NEW" starts a new screen definition. Example:

NEW Main MainScreen.dds 0 0 0 1024 768 1024 1024 $lastscreen
B: Screen This is the name of a defined gamescreen.
C: Targa This column contains either the name and file type for a graphics file or specific text entries

used on a defined gamescreen.
D: FONT-L/R/C-R-G-B name-justified-R-G-B
E: Run Game 0 = Game paused; 1= Game runs & drawn; 2= Game paused & drawn
F: X Coord This is the distance in pixels from the bottom of the screen that the top left hand corner of a

graphic or text entry will be displayed.
G: Y Coord This is the distance in pixels from the left side of the screen that the left edge of a graphic or

text entry will be displayed.
H: Width This is the width dimension of a graphic in number of pixels.
I: Height This is the height dimension of a graphic in number of pixels.
J: X Source On our .dds screens, we keep all graphics that show up on the screen in the same .dds file.

The x & y source columns are their location in that file. For every line but the new line, this is
the location of the upper left hand corner of this graphic in the mainscreen.dds file.

K: Y Source On our .dds screens, we keep all graphics that show up on the screen in the same .dds file.
The x & y source columns are their location in that file. For every line but the new line, this is
the location of the upper left hand corner of this graphic in the mainscreen.dds file.

L: Draw Condition The conditions that must exist in order for a graphic or text to be displayed/written to the
screen in question.

M: Exec Condition The execute condition is a conditional statement that allows the function of the button to
occur. If the condition fails it will not execute the function of the button.

N: Function This is the game function called when the defined button is selected by the player.
O: Depends1 The game function called depends on this additional condition.
P: Depends2 The game function called depends on this additional condition.

NOTES: MAINSCREENS & GAMESCREENS

X,Y coord: The game screen is drawn to 0,0. On width and height, the screen is 1024x768
pixels X&Y source, for the "NEW" line, this defines the dimensions of the dds file

BUTTON 373 687 289 36 317 821 exit

This button will be drawn at 373,687 based on the location of this screen (not the entire
game window, though they are the same in this example), the width and height of this
button is 289x36 pixels. It is in the file <mainscreen.dds>. It will be drawn like this on the
game screen. We don't support shrinking or stretching here.

75

The Mainsounds.csv

All sounds used in the game must be in wav format. All sounds that are used in the main menus
must be predefined in the mainsounds.csv file and then referenced in the other files by the name.
The gamesounds.csv file defines those sounds that are used in game; the mainsounds.csv file
defines those sounds that are used in the pre-game menus.

Note: There must be one sound with the name of click. This is the default sound for button clicks.
This sound can be over ridden in the appropriate file, but this default must exist in case there is no
specific sound defined for a particular button.

Column Explanation
A: Name The name of the sound. This name is used in all of the other csv files that

need access to the sound.
B: File This is the name of the wav file that must exist in the Sounds folder. This

will attach the name to this file.
C: Min Dist This is the minimum distance in yards away from the sound that the max

volume of the sound will be heard. The sound is played at the highest
volume at the minimum distance all the way to the actual location.

D: Max Dist This is the maximum distance away from the location of the sound that you
will hear the sound. The sound is lowered in volume from the min to max
dist.

0 - Min Dist yards : highest volume
Min Dist - Max Dist yards: sound is gradually lowered to 0.
Greater than Max Dist yards : no sound is heard

E: Loop This is a 0 or a 1 defining whether the sound loops or not. Looping sounds
are used for all ambient sounds and most state sounds (Marching, Standing,
Shooting). Non-looping sounds are used for the button clicks and
explosions.

F: Vol
This is the volume to play the sound. The volume is defined as a number
between -10000 and 0. With 0 being the highest possible volume of the
sound and -10000 being absolutely silent. No sounds are amplified; a value
of 0 just plays at the normal volume of the wav file.

The Gamesounds.csv

All sounds used in the game must be in wav format. All sounds that are used in the game must be
predefined in the gamesounds.csv file and then referenced in the other files by the name. The
gamesounds.csv file defines those sounds that are used in game; the mainsounds.csv file defines
those sounds that are used in the pre-game menus.

Note: There must be one sound with the name of click. This is the default sound for button clicks.
This sound can be over ridden in the appropriate file, but this default must exist in case there is no
specific sound defined for a particular button.

Column Explanation
76

A: Name The name of the sound. This name is used in all of the other csv files that
need access to the sound.

B: File This is the name of the wav file that must exist in the Sounds folder. This
will attach the name to this file.

C: Min Dist This is the minimum distance in yards away from the sound that the max
volume of the sound will be heard. The sound is played at the highest
volume at the minimum distance all the way to the actual location.

D: Max Dist This is the maximum distance away from the location of the sound that you
will hear the sound. The sound is lowered in volume from the min to max
dist.

0 - Min Dist yards: highest volume
Min Dist - Max Dist yards: sound is gradually lowered to 0.
Greater than Max Dist yards : no sound is heard

E: Loop This is a 0 or a 1 defining whether the sounds loops or not. Looping sounds
are used for all ambient sounds and most state sounds (Marching, Standing,
Shooting). Non-looping sounds are used for the button clicks and
explosions.

F: Vol
This is the volume to play the sound. The volume is defined as a number
between -10000 and 0. With 0 being the highest possible volume of the
sound and -10000 being absolutely silent. No sounds are amplified; a value
of 0 just plays at the normal volume of the wav file.

The Effects.csv

The effects.csv file defines all of the explosions and smoke effects visible during gameplay. These
effects are basically a pcx file played a variety of ways. The pcx file uses solid black for the alpha
channel. All of the pcx files referenced in this file must be found in the graphics/effects folder.

NOTE: There must be one effect that is named smoke. This name is hardcoded for use at
the end of all barrels of all weapons when that weapon is fired.

Column Explanation
A: Name This is the name of this effect. This name is referenced in other csv files that

need access to an effect.
B: Particle File This is the name of the pcx file for this effect. This file uses solid black as the

alpha channel.
C: Alpha Start When an effect is played in the game, it slowly disappears until completely

invisible. This has nothing to do with the alpha channel of solid black in the
pcx file for parts of the file that will never be seen. This value is between
255-0, with 255 meaning that the effect starts as completely solid and 0
meaning completely invisible. We start most of our effects at 225, meaning
that they are semi transparent when first appearing. If someone wanted to
make the smoke last longer, they could just set this value higher.

D: Alpha Step This is how must alpha the effect will lose on every frame of the game. We
set this value to -1, meaning that the alpha will be decreased by 1 each
frame until it is completely invisible.

E: Scale Start This is the scale of the effect. If a value of 0 is here, then the effect will be
played at the exact size that it exists in the file. This value is a percentage
meaning that if you put in 0.5, then the effect will start at half size.

F: Scale Step This is how much the scale will change on each frame. This value will be
added to the current scale on each frame to get the final scale of the effect.

77

If you want the effect to increase in size over time, then use a positive
number. If you want it to get smaller, then use a negative number.

G: Gravity This sets the height of the effect over time. If you use a positive number
here, the effect will appear to rise in each frame. A negative number will
make it appear to sink towards the terrain.

H: Should the Particles Move
This determines whether or not the particle will move. Use a value of 1 to
have the effect move, a value of 0 will keep the effect in its original position.

I: Emitter Frames An emitter is a random bunch of very small pixels that will explode out from
the area of the effect. These are randomly generated by the engine for this
amount of frames. We only use one frame for a small amount of emitters, to
get more just increase this number.

J: Should the emitter move
This determines whether or not the location of the emitter should move. The
emitter being the source from where the small pixels are generated.

K: Num Particles This is really the number of small pixels that the emitter should generate
each frame in which they are being generated.

L: Random Particle Velocity This is the speed that the small pixels should move. I don't know how to
compare it to speed in the game, so just experiment until you get it looking
like you want it to.

DESIGN TIP: From the effects.csv - Setting the length of an effect such as Smoke

"C" Alpha Start - (255 through 1) (int)
"D" Alpha Step - (-1 through -255) (int)

For each "frame", the Alpha step is added to Alpha to get the new Alpha until the Alpha
reaches 0 and the effect disappears.

"E" Scale Start - no limits - starting scale (float)
"F" Scale Step - no limits - added to scale (float)

For each "frame", the Scale step is added to Scale to get the new Scale until the particle
disappears (still based on Alpha).

All of these routines are grabbed right from the engine and the problem is obvious--you
cannot set the time of the frames. The longest an effect can be on screen is 255 frames,
so depending on how fast your computer runs determines how long you will see the smoke
or any other effect. You can shorten the time of the effect, but you cannot make it longer.

There is a routine where if you set the alpha step to 0, you could set the number of frames
for the effect, But of course this is tied to frame time as well and would not be the same
across all computers due to varying CPU speeds. This routine is not supported in the
War3D engine so it is not available to modders.

78

Using the WarEdit Utility

The WarEdit Utility was designed to allow the modder and scenario designer to easily edit the .csv
files that support the War3D game engine. This section contains an overview of how to use it.

Installation.

Unzip the WarEdit Utility to main game directory. It will add WarEdit.exe file.

Double click on the WarEdit.exe file. It will open and display the last .csv file you were working on
(the first time that you use it, it will be blank). You can several instances of the WarEdit Utility open
on your desktop at the same time. This makes it easy to have all the information available from the
different, interrelated—csv files.

The WarEdit Utility screen with a units.csv file open

WarEdit Utility Functions.

File/Open. Selecting this function will allow you to navigate through your computer directory to locate
.csv files.

File/Save. Selecting this function will allow you to save the .csv file you are working on with the same
name.

File/Save As. Selecting this function will allow you to save the .csv file you are working on with a new
name.

File/Exit. Selecting this function will close the WarEdit Utility. If you have changed the open file in
any way, a pop-up window will appear asking you if you wish to save.

79

File/About. Selecting this function will display the version of the WarEdit Utility that you are using.

Edit/Insert Blank Row. Selecting this inserts a blank row above the selected row in the WarEdit
Utility window. Use the <Insert> key on the keyboard to perform the same function.

Edit/Delete Row. This function allows you to delete the entire selected row from your .csv file. Use
the <Delete> key on the keyboard to perform the same function.

Edit/Undo Delete Row. This function reinserts the last deleted row. Use the <Ctrl+Z> keys on the
keyboard to perform the same function. The <Undo Delete Row> is function is unlimited. It will go
back as many as you want.

Edit/Copy Row. This function allows you to copy the selected row to the clipboard. This function
reinserts the last deleted row. Use the <Ctrl+C> keys on the keyboard to perform the same function.

Edit/Paste Row. This function automatically adds a row above the selected row and pastes the
copied data into this new row. Use the <Ctrl+V> keys on the keyboard to perform the same function.
You can keep adding the same cut data using the <Paste Row> function. You cannot undo the
<Paste Row> function.

NOTE: You can keep adding the same data from the same copied row using the <Paste
Row> function. You cannot undo the <Paste Row> function (use the Delete Row function
to do this).

Edit/Cut Row. This function cuts the row from the .csv file and moves the rows that follow up one
row. Use the <Ctrl+X> keys on the keyboard to perform the same function.

Edit/Import Unitlocs.csv. This function imports dir x, dir z, loc x, loc z data from the unitlocs.csv file
into the currently open units.csv file.

Other Keyboard functions.

< Home > Key . This will move the view within the WarEdit Utility window to the top of the current file.

< End > Key . This will move the view within the WarEdit Utility window to the bottom of the current
file.

< Top of Page > Key . This will move the view within the WarEdit Utility window up one page in the
current file.

< Bottom of Page > Key . This will move the view within the WarEdit Utility window down one page
in the current file.

< Esc > Key . If you are typing in a cell and hit the <Esc> key, then the cell contents will revert back to
the information that was in the cell before you typed.

< Enter > Key . If you hit the <Enter> key after typing in a cell, the focus of the WarEdit Utility will
change to the next cell down in the column.

80

Using the WarPack Utility

Creating an .mmg file for distribution. If you wish to distribute a regular Custom
Scenario or a Custom Scenario containing modded .csv files it is relatively simple.

From your CD, copy the file SDK\WarPack.exe into the main game directory. Run this program by
double-left clicking on the WarPack icon. If you have done this correctly, then the MadMinute Games
Pack File Creator window will open. It looks like this:

The WarPack Utility looks in the scenarios directory and will show in the top left box all of the
subdirectories present there (i.e. all Custom Scenario folders). The box at the top right of the window
shows all the existing .mmg files that are in the scenarios directory. In the example above, all of the
scenario folders from the SDK have been placed in the scenarios directory and scenario SM26 -30
Aug – Sykes (U_Div) has been selected. The box at the bottom of the window displays all the
folders and files contained in the Sykes Custom Scenario. To create a new .mmg file of this scenario,
click on the <Create MMG file> button. This file will automatically be created in the scenarios
directory. This compressed file (about 40-150 KBs for an average Custom Scenario) can be easily
shared among other players as an email attachment. Select the <Close> button to exit the WarPack
Utility.

81

On-Line Help

Visit our website http://www.MadMinuteGames.com for additional information
about TAKE COMMAND, including, additional modding information, downloads,
game reviews, updates, patches and user created scenarios by players from all
over the world.

Also, be sure to drop by our helpful forums for answers to any questions you may
have and to learn hints, tips, and strategies on how to beat those darn Rebs/Yanks. You can visit the
MMG Forums at:

http://www.madminutegames.com/MadMinuteBB/index.php

A Note from The Editor

The Take Command Developer’s Guide is the result of the efforts of several folks. A large portion
of the text was written by Norb Timpko and Jim Weaver with supporting efforts from Adam Bryant and
Brett Schulte. As compiler of it all, I tried to transform it into “fine literature”—with the possibility of a
movie option staring Bruce Willis as “Norb” and Keanu Reeves as “Adam”. Towards that end—I have
failed. As such, you will find several “voices” in this document. I didn’t edit these out. They are
reminders—to me anyway—that the game and this document are the result of the efforts of many
people who love this lil’ engine. If something is found to be in error within the guide the fault is mine
—I was the editor.

So now you know enough to be dangerous. As an independent modder and volunteer scenario
designer for the Take Command game engine for over a year, I’ll offer one last thought. I must point
out that the responsibility for debugging, testing, and supporting a mod or player-created Custom
Scenario rests squarely with the builder—not MMG. Remember—MMG is only two guys working on
this game series in their spare time. The Take Command Modding Community needs to “kick in” and
help other modders through the “Norb Screens of Death”—yes your ever present friend—the CTD.
Every minute you save Adam and Norb from having to answer a question puts us all another
MadMinute closer to getting to Shiloh.

So hang tough, keep up the fire—and git moddin’.

v/r

Wrangler

“I haven't failed. I've just found 10,000 ways that won't work.”—Thomas Edison
82

http://www.madminutegames.com/MadMinuteBB/index.php

Appendix A: Variables Reference

There are a ton of variables that are filled in based on the currently selected unit. The entire variable
list is below. These variables are used on the toolbars and the in game screens.

Variables are used in conditions for many screens and toolbars. A condition is a function that is
either true or false. For example each toolbar graphic has a show condition column. In this column
you can place a condition which will be evaluated when drawing the toolbar. If this statement
evaluates to true, then the graphic is drawn, if it evaluates to false, then the graphic is not drawn. The
following is the list of valid condition operators with examples. Note that all conditions use the #
symbol before the variable name. This means that we need to use the variable as a number. We do
not support the use of strings in our conditions.

#visible == 1 This is a basic equality operator. If the variable on the left is equal to the value on the
right, then this condition will be true, otherwise it will be false.

#leaderbonus != 0 This is a basic inequality operator. If the variable on the left is not equal to the
value on the right, then this condition will be true. Otherwise it will be false.

#moralelvl < 5 This is a basic less than operator. If the variable on the left is less than the value on
the right, then this condition will be true. Otherwise it will be false. This can also be combined with
an equal = symbol for less than or equal.

#ammoman > 57 This is a basic greater than operator. If the variable on the left is greater than the
value on the right, then this condition will be true. Otherwise it will be false. This can also be
combined with an equal = symbol for greater than or equal.

1 <= #ordernum <= 2 This is how we combine symbols for a range. It's the same as doing 2 of the
above operators in one line. In this case #ordernum must be greater than or equal to 1 AND
#ordernum must be less than or equal to 2 for this statement to be true.

Variable Explanation/Where Used
terrain Used as a string to display the type of terrain a Commander or unit is in. [gamescreens.csv]
name Used as a string to display Commander and Unit names. [units.csv/gamescreens.csv]
name2 Used as a string to display Commander and Unit names. [units.csv/gamescreens.csv]
name3 Used as a string to display Commander and Unit names. [units.csv/gamescreens.csv]
men Used as a string to display the number of men in a Command or Unit.

[units.csv/gamescreens.csv]
quality Used as a string to display the quality of a Commander or Unit. [units.csv/gamescreens.csv]
morale Used as a string to display the morale of a Unit. [units.csv/gamescreens.csv]
fatigue Used as a string to display the fatigue of a Unit. [units.csv/gamescreens.csv]

83

weather Used as a string to display the weather above the game compass. Used as a string to display
the morale of a Unit. [levels.csv/gamescreens.csv]

timer
grade Used as a string to display the quality of a Commander or Unit. [units.csv/gamescreens.csv]
disposition Used as a string to display the disposition (moving, stationary) of a Commander or Unit.

[gamescreens.csv]
orders Used as a string to display the current orders (stance) of a Commander. [gamescreens.csv]
moralecur current morale number [toolbar.csv]
moralemin minimum morale number [toolbar.csv]
moralemax maximum morale number [toolbar.csv]
fatiguecur current fatigue number [toolbar.csv]
fatiguemin minimum fatigue number [toolbar.csv]
fatiguemax maximum fatigue number [toolbar.csv]
mencur current number of men [toolbar.csv]
menstart starting number of men [toolbar.csv]
mencas total casualties [toolbar.csv]
attached #attached == 0 means the Commander or Unit is attached. #attached == 1 means the

Commander or Unit is detached from his/its Superior Commander. [toolbar.csv]
rallying #rallying == 1 means the Unit is rallying. [toolbar.csv]
leaderbonus #leaderbonus != 0 means the Unit is not receiving the Leader Bonus [levels.csv/toolbars.csv]
unitbonus #unitbonus != 0 means the Unit is not receiving the adjacent Unit Bonus. #unitbonus != 1

means the Unit is receiving the adjacent Unit Bonus and will display an icon to that effect on the
selected unit’s toolbar [levels.csv/toolbars.csv]

visible #visible == 0 means the Units cannot be seen by any enemy units. #visible == 1 means the
Unit is Visible to Enemy units and will display an icon to that effect on the selected unit’s toolbar
[levels.csv/toolbars.csv]

defbonus #defbonus == 0 means the Unit is not receiving the Defensive Terrain Bonus. #defbonus == 1
means the Unit is receiving the Defensive Terrain Bonus and will display an icon to that effect
on the selected unit’s toolbar [terrain.csv/toolbars.csv]

ammo current ammo level [toolbar.csv]
ammostr ammo total amount string [toolbar.csv]
ammostart starting ammo level [toolbar.csv]
ammoman ammo per man [toolbar.csv]
ammospr ammo per sprite [toolbar.csv]
status Used as a string to display the status of a Unit. [units.csv/gamescreens.csv]
moralelvl #moralelvl is a number representing a unit’s current morale level. [toolbar.csv]
fatiguelvl #fatiguelvl is a number representing a unit’s current fatigue level. [toolbar.csv]
targets number of valid targets
blocked #blocked != 0 means that no enemy targets are blocked by friendly units. #blocked != 1 means

that A Target is Blocked and will display an icon to that effect on the selected unit’s toolbar
[toolbars.csv]

casstart string that shows cas/start, 100/1000
weapon Used as a string to display the type of weapon a Unit has. [weapons.csv/gamescreens.csv]
weapon2 Used as a string to display a second type of weapon a Unit has.

[weapons.csv/gamescreens.csv]
weaponmax Used as a number to display a weapon’s maximum range. [weapons.csv/gamescreens.csv]
weaponopt optimal distance for weapon
mendead Used as a number to display how many men have been killed in a friendly Unit.

[gamescreens.csv]
enemydead Used as a number to display how many enemy men have been killed by a friendly Unit.

[gamescreens.csv]
obj1 Objective name.
obj2 Objective name.
obj3 Objective name.

84

objdone1 Flag showing whether or not obj1 is completed.
objdone2 Flag showing whether or not obj2 is completed.
objdone3 Flag showing whether or not obj3 is completed.
flankfire #flankfire==0 means the Unit is not receiving flanking fire. #flankfire==1 means the Unit is

Getting Flanked and will display an icon to that effect on the selected unit’s toolbar
[toolbars.csv]

elevbonus #elevbonus==0 means the Unit is not receiving the High Ground Bonus. #elevbonus==1
means the Unit is receiving the High Ground Bonus and will display an icon to that effect on the
selected unit’s toolbar. [tables.csv/toolbars.csv]

resting #resting==0 means the Unit is not resting. #resting==1 means the Unit is Resting and will
display an icon to that effect on the selected unit’s toolbar. [toolbars.csv]

skill%dcur current level of the skill (replace %d with number)
skill%dmax maximum level of the skill (replace %d with number)
expcur Current Experience (Quality) Level. Game engine variable.
expmax Maximum Experience (Quality) Level. Game engine variable.
leadcur Current Leadership Level. Game engine variable.
leadmax Maximum Leadership Level. Game engine variable.
abilcur Current Ability Level. Game engine variable.
abilmax Maximum Ability Level. Game engine variable.
loycur Current Loyalty Level. Game engine variable.
loymax Maximum Loyalty Level. Game engine variable.
initcur Current Initiative Level. Game engine variable.
initmax Maximum Initiative Level. Game engine variable.
takecomm #takecomm == 1 means Take Command from AI. #takecomm == 0 means Relinquish

Command to the AI. [toolbar.csv]
ordernum The index of the order currently assigned. [toolbar.csv]
formnum This is the formation as derived from Column A of the formations.csv. The first formation

named = 0, the second formation named = 1, etc. [formations.csv/toolbar.csv]
regstate This is the movement state of a regiment. #regstate == 1 means stop, #regstate == 3 means

run. #regstate == 4 means charge. #regstate == 6 means takecover. #regstate == 7 means
fallback. #regstate == 8 means retreat. #regstate == 9 means advance. [toolbar.csv]

useroads #useroads == 0 means the Commander or Unit has not been directed to use roads. #useroads
== 1 means the Commander or Unit has been directed to use roads. [toolbar.csv]

artyammo #artyammo == 0 means use canister. #artyammo == 1 means use solid shot. #artyammo == 2
means use shell. #artyammo == 3 means use shrapnel. [toolbar.csv]

artyfire #artyfire == 0 means AI chooses target. #artyfire == 1 means Target: Troops. #artyfire == 2
means Target: Artillery. #artyfire == 3 means Conserve Ammo or Battery Hold Fire.
[toolbar.csv]

artylimber #artylimber == 0 means unlimber the gun. #artylimber == 2 means limber the gun. [toolbar.csv]
limcur Time left to limber or unlimber. [toolbar.csv]
limmax Total time to limber or unlimber. [toolbar.csv]
artyammo1 Used as a number to display the number of rounds of canister. [gamescreens.csv]
artyammo2 Used as a number to display the number of rounds of solid shot [gamescreens.csv]
artyammo3 Used as a number to display the number of rounds of shell. [gamescreens.csv]
artyammo4 Used as a number to show the number of rounds of shrapnel. [gamescreens.csv]
mounted #mounted == 0 means the cavalry Unit is mounted. #mounted == 1 means a cavalry unit is

dismounted. [toolbar.csv]
objtimer Used as a string to define position and font for the objective timer. [tooltext.csv]
officer Used as a string to display the commanding officers name on a pop-up window.

[gamescreens.csv]
artyminrange%d Used as a string to display the minimum range of a type of round of artillery ammunition.

[gamescreens.csv]
artymaxrange%d Used as a string to display the maximum range of a type of round of artillery ammunition.

[gamescreens.csv]
rank Rank level. [gamescreen.csv]

85

sellead1 Selected units 1st leader. [gamescreen.csv]
sellead2 Selected units 2nd leader. [gamescreen.csv]
sellead3 Selected units 3rd leader. [gamescreen.csv]
sellead4 Selected units 4th leader. [gamescreen.csv]
unittype Used as a string to display a Unit’s branch of service. [gamescreens.csv]
caskilled Used as a number to display the number of men killed in a friendly Unit. [gamescreens.csv]
caswound Used as a number to display the number of men wounded in a friendly Unit. [gamescreens.csv]
casdesert Used as a number to display the number of men deserted in a friendly Unit. [gamescreens.csv]
mencaparty Used as a number to display the number of men or guns captured. [gamescreens.csv]
reloadsec Used as a number to display the number of seconds required by a Unit to reload its weapons.

[gamescreens.csv/weapons.csv/levels.csv]

86

Appendix B: Event Commands Reference

There are many game commands in TAKE COMMAND. They can be used to support toolbar
buttons, menus, and in the events.csv file for any Custom Scenario. All commands are in lowercase.
If you preface a command with the capital letter <A>, then this command will affect all units
subordinate to the Commander receiving the command. So if you have a brigade Commander
selected and you click a button that sends the 'run' command. Then only he runs. But if you have
that button send the <Arun> command, then the brigade Commander and all regiments under him
will run.

NOTE: All game commands won't necessarily work on every csv file. Study the various csv
files in the SDK that use these commands to get a feel for what will work and where. When
all else fails, don’t be afraid to experiment.

Command Explanation / Where Used
aboutface Commands the selected Commander or Unit to turn 180 degrees from current facing.

[events.csv/toolbar.csv]
advance Commands the selected Commander’s subordinates or the selected Unit to advance 50 yards

towards an enemy Unit that is within open fire range. [events.csv/toolbar.csv]
Ahalt Commands everyone in the named Commander’s organization to stop right where they are, rather

than in the currently designated formation of their Commander.
applyoptions Game engine command. Applies options selected on the Options Game Screen

[mainscreens.csv]
artyfireai Commands the AI for the selected artillery battery to pick its own targets. [events.csv/toolbar.csv]
artyfirearty Commands the AI for the selected artillery battery to fire only at enemy artillery Units.

[events.csv/toolbar.csv]
artyfirehold Commands the AI for the selected artillery battery to hold its fire. An artillery battery under the

artyfirehold command will still fire canister in self defense if approached within canister range by
an enemy unit. [events.csv/toolbar.csv]

artyfiretroops Commands the AI for the selected artillery battery to fire only at enemy infantry and cavalry Units.
[events.csv/toolbar.csv]

attach Commands the selected Unit to attach itself to its Superior Commander. [events.csv/toolbar.csv]
begrandom Game engine command to load an Open Play scenario. [mainscreens.csv]
charge Commands the selected unit to charge a spotted enemy Unit. [events.csv/toolbar.csv]
close Game engine command to close a screen. [gamescreens.csv]
closelevel Game engine command to close a level. [gamescreens.csv]
courier Commands the named Commander to send a message to the player’s Commander. [events.csv]
delevt Commands that an event listed on the events.csv be deleted from the in-game event execution

list. [events.csv]
delsave Game engine command to delete a saved game. [mainscreens.csv]
detach Commands the selected Unit to detach itself from its Superior Commander.

[events.csv/toolbar.csv]
doneloc Game engine command for Open Play courier message to Superior Commander. “I have arrived

at the location ordered.” [gamescreens.csv]
donequad Game engine command for Open Play courier message to Superior Commander. “I have arrived

at the quadrant ordered.” [gamescreens.csv]
donevp Game engine command for Open Play courier message to Superior Commander. “I have

captured the objective ordered.” [gamescreens.csv]
endscenario This command must be called via the events.csv to create the .mmc saved game file required for

carryover. [events.csv]
exit Game engine command to exit a main or game screen. [mainscreens.csv/gamescreens.csv]
fallback Commands the selected/named Unit to fall back at walk speed 50 yards to the rear of its current

87

facing. The Unit will continue to fire at enemy forces is range while executing this command.
[events.csv/toolbar.csv]

fightform Assigns the fighting formation for a unit highground - arty move to best ground host - unused -
remove join - unused - remove loadlevel - loads scenario loadspec - loads scenario plyrdest -
unused - please remove setleaders - assigns leader vars for current unit

fire Commands the selected/named Unit to open fire. [events.csv]
forcemove Commands the selected/named Commander/Unit to move to the selected/designated location

regardless of the presence of enemy Units. [events.csv]
form Commands the selected/named Commander/Unit to assume a formation. [events.csv/toolbar.csv]
gatherhigh Game engine command. [mainscreens.csv]
gathercarry Game engine command. [mainscreens.csv]
goto Game engine command. [events.csv]
help Game engine command for Open Play courier message to Superior Commander. “I need help!”

[gamescreens.csv].
hideunit Commands the named Commander/Unit to “disappear” from the game map. The

Commander/Unit is still there—it just doesn’t show up in play. [events.csv]
highground Game engine command.
highscore Game engine command. List high score. [mainscreens.csv]
host Game engine command.
join Game engine command.
killoff Commands the named Commander to be killed. [events.csv]
limber Commands the selected artillery battery or gun to limber. [events.csv/toolbar.csv]
loadbullrun Game engine command. Load a battle<#>num. [mainscreens.csv]
loadgame Game engine command. Load a saved game. [mainscreens.csv]
loadlevel Game engine command.
loadscen Game engine command. Load a scenario. [mainscreens.csv]
loadscreen Commands that a game screen appear during game play.

[events.csv/mainscreens.csv/gamescreens.csv]
loadspec Game engine command.
logmsg Commands that a courier message be logged for later review via the Message Log game screen.

[events.csv]
movedir Commands the named Commander/Unit to move in a specified direction (dir x, dir z). [events.csv]
moveto Commands the named Commander/Unit to move to a specified location (loc x, loc z). [events.csv]
mycourier Game engine command for Open Play courier message to Superior Commander. Used as the

preceding command for help, donequad, doneloc, and donevp [gamescreens.csv].
objactivate Commands that an objective listed on the objectives.csv be activated. [events.csv]
orders Commands that a stance order be issued to the named Commander. [events.csv/toolbar.csv]
playmp3 Game engine command. Play MP3 file at endscenario. [gamescreens.csv]
plyrdest Game engine command.
quickload Game engine command. Used for an in-game scenario load. [gamescreens.csv]
rally Commands that the named Unit’s morale level be returned to the level it started the scenario with.

[events.csv]
ranrandom Game engine command. Generate a random Open Play scenario. [mainscreens.csv]
resupply Commands the selected/named Unit to move to the Superior Commander’s supply wagon to

upload ammo. [events.csv/toolbar.csv]
retreat Commands the selected/named Unit to retreat at walk speed 100 yards to the rear of its current

facing. [events.csv/toolbar.csv]
route Commands the selected/named Unit to rout at run speed 500 yards to the rear of its current facing

(generally away from the enemy). [events.csv/toolbar.csv]
run Commands the selected/named Commander/Unit to double-quick. [events.csv/toolbar.csv]
safeplace Designates a specific location on the game map for subordinate Units of the named Commander

to retreat to—if forced to retreat. [events.csv]
savegame Game engine command. Save the game in play. [gamescreens.csv]
setammo Command sets the ammo type for a gun (Solid, Shell, Canister, Shrapnel)

88

[events.csv/toolbar.csv]
setleaders Assigns variables for current Commander [gamescreens.csv]
setvars Assigns variables for current unit [gamescreens.csv]
showunit Commands the named Commander/Unit to appear on the game map. [events.csv]
stop Commands the selected/named Commander/Unit to halt. [events.csv/toolbar.csv]
switchcmn Commands the selected/named cavalry unit to mount or dismount. [events.csv/toolbar.csv]
takecover Commands the unit to go prone. [events.csv/toolbar.csv]
takecommand Game engine command [toolbar.csv]
tcommoff Release command of the selected/named Commander/Units back to the AI.

[events.csv/toolbar.csv]
tcommon Takes command of the selected/named Commander/Units away from the AI.

[events.csv/toolbar.csv]
unlimber Commands the selected artillery battery or gun to unlimber. [events.csv/toolbar.csv]
useroad Commands the selected/named Commander/Unit to use road movement to move to his/its

destination. [events.csv/toolbar.csv]
wheelleft Commands the selected/named Commander/Unit to wheel left 10 degrees.

[events.csv/toolbar.csv]
wheelright Commands the selected/named Commander/Unit to wheel right 10 degrees.

[events.csv/toolbar.csv]

89

Appendix C: Events.csv Examples

Command Explanation Time ID Name Command

X
C

oo
rd

Z
C

oo
rd tim

e
va

r

aboutface Commands the
selected Commander
or Unit to turn 180
degrees from current
facing.

9:15:08 U_14th_IA aboutface

advance Commands the
named unit to perform
the advance function
(the opposite of the
fallback function)
(also Aadvance).

9:15:08 U_14th_IA advance

Ahalt Commands
everyone in the
named
Commander’s
organization to stop
right where they
are, rather than in
the currently
designated
formation of their
Commander.

9:15:08 U_WTShaw Ahalt

artyfireai Commands the AI for
the named battery to
select targets for the
named battery.

9:15:08 Pelham artyfireai

artyfirearty Commands the AI for
the named battery to
only fire at artillery
type targets.

9:15:08 Pelham artyfirearty

artyfirehold Commands the AI for
the named battery to
hold fire.

9:15:08 Pelham artyfirehold

artyfiretroops Commands the AI for
the named battery to
only fire at
infantry/cavalry type
targets.

9:15:08 Pelham artyfiretroops

attach Commands the
named leader/unit to
attach to its owning
leader (as designated
on the units.csv).

9:15:08 U_14th_IA attach

charge Commands the
named unit to charge
(also Acharge)

9:15:08 U_14th_IA charge

courier Commands that a
courier be sent from
one named
Commander/Unit to
another named
Commander/Unit.

9:15:08 Hunter courier:Burnside:loadscreen:Co
urier:Burnside

90

delevt Delete an event. This
is useful for canceling
an event if it no
longer is required or
makes sense.
Example: an
evtdeath message
lets the player know a
leader has been
killed. Any other
messages from this
dead leader should
"die" with him.

9:15:08 delevt:evtarrived:C_RSEwell

detach Commands the
named
Commander/Unit to
detach from its parent
Commander/Unit (the
opposite of attach).

9:16:15 Bee detach

enddir The direction you
want a formation to
face upon arrival at a
location (also
Aenddir)

evtarrived This event is
triggered when the
unit defined in
column: B has arrived
at the location define
in columns D & E.
This means that the
unit in column B is
stopped and within
100 yards of the
location. Also that all
of his subordinates
are also stopped.
This is used to
determine that a
formation is halted
and set up.

evtarrived U_WTShaw Aform:Brig_Line

EvtArrived

Same as above
except at the
regiment level.

Evtarrived U_14th_IA form:ManuverColumn

evtcont Predicate for
continuing a series of
evt events.

evtcont U_14th_IA takecover

evtcourier This event is
triggered when the
commander defined
in column: B has
received a courier
message. Since the
AI throws couriers all
around, use this
carefully. The first
event occurs when
the first courier
arrives, and the
second event is
triggered with the
arrival of the second
courier.

evtcourier U_WTShaw Aform:Brig_Line

evtdeath This event is
triggered when the
commander defined
in column: B has
died. This is how we

evtdeath U_WTShaw endscenario:EndPlayerDie

91

end the game when
the player dies. It can
also be used to add
some variety to a
scenario, because
units may or may not
actually die.

evtfailcheck This event is
triggered when the
commander defined
in column: B has
reached the fail grade
listed on the scenario
level.ini file (?). The
fail grades are
command specific.
These are the events
that we use in open
play to end the battle.
Each level of
command has its own
fail grade. By adding
this event to a unit,
that unit will now do
fail checks. If their
grade falls below the
fail grade for their
command level, then
this event will be
triggered.

evtfailcheck U_WTShaw

evtfighting This event is
triggered when the
Commander defined
in column: B has first
engaged the enemy.

evtfighting U_WTShaw Aadvance

EvtFighting

Regiment level-This
event is triggered
when the Unit defined
in column: B has first
engaged the enemy.

EvtFighting U_14th_IA advance

evtgiveup This event is
triggered when the
Commander defined
in column: B has
given up. This means
that they have lost all
of their subordinate
units.

evtgiveup U_WTShaw Arout

EvtGiveUp regiment level EvtGiveUp U_14th_IA rout
evtgrade This event is

triggered when the
Commander defined
in column: B has
reached a certain
grade. Note that this
is a greater than or
equal to >=
comparison and will
not work to see if a
unit has reached a
low grade, only a high
grade. This event is
the opposite of
evtfailcheck.

evtgrade U_WTShaw 20

EvtIArrived Regiment level. U_14th_IA form:ManuverColumn

92

evtintrouble This event is
triggered when the
unit defined in
column: B is in
trouble. This state
can be seen by the
displaying of the in
trouble icon over that
unit. It usually means
that all of their men
need rallying and that
this unit is really no
longer a fighting
force.

evtintrouble U_WTShaw Aretreat

EvtInTrouble Regiment level EvtInTrouble U_14th_IA retreat
evtobjarmy1 This is just like

evtobjdone, except
that it is only triggered
when army 1 has
completed the
objective.

evtobjarmy1 objective1 courier:Burnside:loadscreen:Co
urier:Burnside

evtobjarmy2 This is just like
evtobjdone, except
that it is only triggered
when army 2 has
completed the
objective.

evtobjarmy2 objective1 courier:C_WBTaliaferro2:loads
creen:Courier:C_WBTaliaferro2
6

evtobjdone This event is
triggered when the
objective defined in
column: B has been
completed. If this is a
hold objective, then
this will trigger the
first time it is
completed. Note that
this requires an
objective ID from the
objectives.csv, not a
unit ID Name.

evtobjdone objective1 courier:C_WBTaliaferro2:loads
creen:Courier:C_WBTaliaferro2
6

evtran Execute a random
event.

evtranUnionStr
ategy6

delevt:evtarrived:C_RSEwell

evtseetarg This event is
triggered when the
commander defined
in column: B has first
seen the enemy.
This is used for
officers and it means
that one of the
regiments under their
chain of command
can see the enemy.

evtseetarg U_WTShaw orders:Attack

EvtSeeTarg Regiment level. This
event is triggered
when the Unit defined
in column: B has first
seen the enemy.

EvtSeeTarg U_14th_IA courier:Prentiss:loadscreen:Co
urier:Prentiss2

fallback Commands the
named Unit to
perform the fallback
function (the opposite
of the advance
function).

9:15:08 14th_IA fallback

fire Commands the
selected/named Unit
to open fire.

9:15:08 14th_IA fire

93

forcemove Command forces
movement regardless
of enemy.

evtcont Porter forcemove ## ##

form Commands a
unit/leader to assume
a formation (also
Aform).

evtcont Porter Aform:Brig_Line

goto Go to screen
message.

evtdeath Beauregard goto

guard:unit_id Cavalry command
only. It directs the
named unit to guard a
named unit.

9:15:01 CoA_1stUS
CAV

guard:U_14th_IA

hideunit Commands the
named leader/unit to
not be shown on the
3D map. This
command is useful for
hiding reinforcements
until they are
scheduled to arrive
on the battlefield.
(also Ahideunit)

9:15:01 Heintzelman Ahideunit

killoff Remove a
Commander /Unit
from the game.

9:15:01 Heintzelman killoff

limber Commands the
named artillery
battery to limber.

9:15:01 Pelham limber

loadscreen Commands the
Courier Screen to be
displayed

9:15:08 Hunter courier:Burnside:loadscreen:Co
urier:Burnside

logmsg Add message text to
the message log.

evtcourier Burnside logmsg:Courier:Burnside3

movedir Commands the
named
Commander/Unit to
move in a specific dir
x, dir z

9:15:08 U_14th_IA movedir 1 0

moveto Commands the
named leader/unit to
move to a specific loc
x, loc z

9:15:08 Imboden moveto ## ##

objactivate Activates an objective
(as named on the
objectives.csv)

evtcont objactivate:Objective2

orders Commands the
named
Commandert/Unit to
assume a specified
stance (Attack,
Probe, Defend,
Hold).

evtcont Jackson orders:Attack

playmp3 Play an mp3 file.
MP3 sound file can
be in the Sound folder
or in the scenario
folder. (see stopmp3)

evtcont playmp3:charge.mp3

raid

Cavalry command
only. It directs the
named unit to raid.

9:15:08 CoA_1stUS
CAV

raid

rally Rally a unit or
command.

9:15:08 U_14th_IA rally

ranevt Declare a random
event.

9:15:08 ranevt:UnionStrategy:6

resupply Resupplies ammo to 9:15:08 U_14th_IA resupply

94

selected/named Unit.
retreat Instructs

selected/named
Commander/Unit to
retreat.

9:15:08 U_14th_IA retreat

route rout[e] - Instructs unit
to rout.

9:15:08 U_14th_IA route

run Instructs leader/unit
to run (also Arun)

evtcont Terry Arun

safeplace A predesignated loc
x, loc z for units to
retreat to; this
command does not
work with routed
units.

9:35:00 U_WKrzyza
nowski

safeplace ## ##

scout

Cavalry command
only. It directs the
named unit to scout.

9:15:08 CoA_1stUS
CAV

scout

screen

Cavalry command
only. It directs the
named unit to screen.

9:15:08 CoA_1stUS
CAV

screen

showunit Commands the
named leader/unit to
appear on the 3d map
(the opposite of
hideunit) (also
Ashowunit)

evtcont Porter Ashowunit

stop Commands the
named leader/unit to
stop movement (also
Astop)

9:15:08 U_14th_IA stop

stopmp3 Stop playing an mp3
file

stopmp3:charge.mp3

switchcmn Commands the
named cavalry unit to
mount or dismount

9:15:12 CoA_1stUS
CAV

switchcmn

takecover Infantry command
only. Directs the
selected /named unit
to assume the prone
position.

9:15:08 U_14th_IA takecover

tcommoff Turns off the Take
Command Function
(AI is activated).

evtcont Heintzelman tcommoff

tcommon Turns on the Take
Command Function
(AI is deactivated).

9:15:02 Tyler tcommon

useroad Commands the
named leader/unit to
use the road while
moving to a new
location (also
Auseroad).

9:15:12 C_WTaliafer
ro

Auseroad

wheelleft Commands the
named leader/unit to
wheel to the left 10
degrees.

9:15:08 U_14th_IA wheelleft 1 0

wheelright Commands the
named leader/unit to
wheel to the right 10
degrees

9:15:08 U_14th_IA wheelright 1 0

follownone Cancels ("turns off")
the cavalry screen,
guard, scout, and raid
commands.

9:15:08 CoA_1stUS
CAV

follownone

95

getaway A 100 yard retreat
(normal is 300), with
no moral or grade
penalties.

9:15:08 U_14th_IA getaway

weather= Command changes
the weather state as
defined in rows 1 thru
25 of the levels.csv
file.

18:15:00 weather=9

96

Index

Ability 24
Accuracy.. 26
Alpha Omega=1.................13, 30, 36
Army=14
Artyammo.csv................................ 56
Bayonet Drill.................................. 27
Breastworks................................... 28
Brigade=.. 14
CantKillMe=................................... 14
Carryover=..................................... 14
CarryOverFrom=............................14
cells 9
columns... 9
CommandHeight=..........................14
CommandRadius=......................... 14
Corps=... 14
Custom Scenario Folder Content.. 12
Data Files...................................... 10
DbgLvl=0....................................... 13
Division=.. 14
Effects Folder.................................10
Effects.csv..................................... 77
EndFail.. 15
EndMajFail..................................... 15
EndMajWin.................................... 15
EndPlayerDie................................. 15
endscenario................................... 15
EndScreen Definitions................... 15
EndTie... 15
EndWin.. 15
Event Commands Reference.........87
Fatigue... 25
File Editing....................................... 8
First Aid (Medical).......................... 27
Flags Folder................................... 10
Folder Contents............................. 10
Formation (Drill)............................. 27
Formations.csv.............................. 70

Full Screen=0................................ 13
Gamescreens.csv.......................... 75
Gamesounds.csv..................... 63, 76
Graphics Folder............................. 10
headers.. 9
Initiative... 22
Leadership..................................... 23
Level.ini File................................... 14
Levels.csv...................................... 64
Loading.. 26
LoseFocus=1................................. 13
Loyalty... 23
Main Game Folders....................... 12
Mainscreens.csv............................ 74
Mainsounds.csv............................. 76
Map Layout.................................... 61
Map_Name.csv.............................. 61
Misc Folder.................................... 10
Morale.. 26
NoAI=0...13
On-Line Help..................................82
Open Play Folder........................... 11
Open Play OOBs........................... 18
Packages Folder............................ 11
Quality... 24
Regiment=..................................... 14
rows 9
Saved Games Folder.....................11
Scenario Carryover Capability....... 16
Scenarios Folder............................11
Screens Folder.............................. 10
Screenshots Folder........................11
Sounds Folder............................... 11
Sprites.csv..................................... 49
StartTime=..................................... 14
StrategicAI=................................... 14
Style 24
Table

97

 Artillery Accuracy.. 70
Table\

 Elevation... 69
 Fallback.. 69
 Fatigue..67
 Fatigue Run.. 68
 Grades.. 68
 Morale.. 67
 Retreat.. 69
 Unit Morale Bonus...................................... 68

Tables.csv......................................66
Tables.csv\..

 Artillery Section...56
TC**.ini File.................................... 13
Terrain Folder................................ 11
Textures.csv.................................. 51

TimeOfDay=.................................. 14
ToolBar Folder............................... 11
Toolbar.csv.................................... 58
Tooltext.csv....................................60
Unit Attribute Values by Year.........28
Unitcommon.csv............................ 52
Units.csv.. 18
Unitsprite.csv................................. 51
values9
Variables Reference...................... 83
WarEdit Utility................................ 79
WarPack Utility.............................. 81
Weapons.csv................................. 54
Weather=....................................... 14
[Rank]14

98

	Introduction
	Who am I?
	Modding Take Command
	Conventions Used in this Guide
	General Notes on File Editing
	CSV Files: Columns, Rows, Cells, Headers, and Values

	The Order of Things
	Folder Contents
	Custom Scenario Folder Content
	TC**.ini File
	Level.ini File
	The EndScenario Command and EndScreen Definitions
	The Scenario Carryover Capability

	Designing an Open Play Order of Battle
	Types of Open Play OOBs
	The Units.csv

	Designing a Custom Scenario
	The Events.csv
	The Objectives.csv
	Intro.txt
	Screen.txt
	The Names.csv

	Mod/Add a Uniform
	The Sprites.csv
	The Textures.csv
	The Unitsprite.csv
	The Unitcommon.csv

	Mod/Add a Flag
	Mod/Add a Weapon
	The Weapons.csv
	The Artyammo.csv
	The Tables.csv: Artillery Section

	Mod the Game Interface
	The Toolbar.csv
	The Tooltext.csv

	Mod a Map
	The Map Layout
	The Map_Name.csv
	Terrain Table Brush
	Terrain Table Sounds
	Terrain Table Objectives

	The Gamesounds.csv

	Modding the Take Command Combat Model
	The Levels.csv
	Table: Morale.
	Table: Fatigue.
	Table: Fatigue Run.
	Table: Unit Morale Bonus.
	Table: Grades.
	Table: Retreat.
	Table: Fallback.
	Table: Elevation.
	Table: Area Mod.
	Table: Capture.
	Table: Artillery Accuracy.

	The Formations.csv

	Miscellaneous
	The Mainscreens.csv
	The Gamescreens.csv
	The Mainsounds.csv
	The Gamesounds.csv
	The Effects.csv

	Using the WarEdit Utility
	Using the WarPack Utility
	On-Line Help
	A Note from The Editor
	Appendix A: Variables Reference
	Appendix B: Event Commands Reference
	Appendix C: Events.csv Examples
	Index

